
Note 7 1

Note 7

Vectors and matrices

7.1 Vectors in Fn

As in the last chapter, we will denote by F a field. What we will explain works over
any field, but the reader can just think of F = R or F = C. When describing solutions
to systems of linear equations, we already worked with Fn, the set of all n-tuples with
entries in F. Also, we already explained that such an n-tuple is for convenience often
identified with an n× 1 matrix. This just means that:

(v1, . . . , vn) can also be written as

 v1
...

vn

 .

When an n-tuple is written as an n× 1 matrix, we say that the n-tuple is written in vector
form. Elements in Fn are therefore called vectors with n entries from F. If all entries of
such a vector are zero, we call that vector the zero vector of Fn.

Remark 7.1

Elements in Fn×1 are sometimes called column vectors, while likewise elements from
F1×n are called row vectors.

We have already used in the previous chapter that there is a natural way to add two
vectors v and w from Fn, and also that one can multiply a vector from Fn with an
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element c ∈ F, often called a scalar in this context, since multiplying a vector by a
constant can be thought of as scaling the vector. More precisely, addition of vectors is
defined as:  v1

...
vn

+

 w1
...

wn

 =

 v1 + w1
...

vn + wn

 (7-1)

and the product of a scalar with a vector as:

c ·

 v1
...

vn

 =

 c · v1
...

c · vn

 . (7-2)

As in the case for matrices, we will often use boldface fonts for vectors and typically
use letters such as u, v, w. For future reference, we state the following theorem, which
collects a number of properties of the vector addition and scalar multiplication:

Theorem 7.2

Let F be a field, c, d ∈ F and u, v, w ∈ Fn. Then

1. (u + v) + w = u + (v + w)

2. u + v = v + u

3. c · (d · u) = (c · d) · u

4. c · (u + v) = c · u + c · v

5. (c + d) · u = c · u + d · u

We leave the proof of this theorem out.

Now that we have vectors at out disposal, we will be able to discuss further properties
they have. We start with an example.

Example 7.3

Consider the vectors

u =

[
1
2

]
and v =

[
2
1

]
∈ R2.
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1. Compute 4 · u + 3 · v.

2. Find c and d such that c · u + d · v = 0, where 0 denotes the zero vector in R2.

Answer:

1. Using the definition of scalar multiplication and vector addition, we find

4 · u + 3 · v = 4 ·
[

1
2

]
+ 3 ·

[
2
1

]
=

[
4
8

]
+

[
6
3

]
=

[
10
11

]
.

2. We have

c · u + d · v = c ·
[

1
2

]
+ d ·

[
2
1

]
=

[
c

2c

]
+

[
2d
d

]
=

[
c + 2d
2c + d

]
.

If we want the outcome to be the zero vector, this means that we need to solve the
homogeneous system of linear equations:{

c + 2d = 0
2c + d = 0

.

Now subtracting the first equation twice from the second equation, in other words
performing the elementary row operation R2 ← R2 − 2 · R1, we obtain the system{

c + 2d = 0
0c− 3d = 0

.

We could continue and bring the system in reduced row echelon form, but it is already
clear now that the only solution is c = d = 0.

An expression like 4 · u + 3 · v is called a linear combination of the vectors u and v. More
general, given vectors v1, . . . , vn ∈ Fm and scalars c1, . . . , cn ∈ F, an expression of the
form

c1 · v1 + · · ·+ cn · vn

is called a linear combination of the vectors v1, . . . , vn. The second part of the example
implies that apparently the only linear combination of the vectors u and v given there
that is equal to the zero vector, is the linear combination 0 · u + 0 · v. In general, a
sequence of vectors can have this property. This is captured in the following:
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Definition 7.4

A sequence of vectors v1, . . . , vn ∈ Fm is called linearly independent if and only if the
equation c1 · v1 + · · · cn · vn = 0 can only hold if c1 = · · · = cn = 0.
If the sequence of vectors v1, . . . , vn ∈ Fm is not linearly independent, one says that
it is linearly dependent.

In other words, a sequence of vectors v1, . . . , vn ∈ Fm is linearly independent if and only
if the only linear combination of the vectors that is equal to the zero vector, occurs for
c1 = · · · = cn = 0. Using some logical expressions, linear independence of a sequence
of vectors v1, . . . , vn ∈ Fm can be phrased as follows:

for all c1, . . . , cn ∈ F one has: c1 · v1 + · · ·+ cn · vn = 0⇒ c1 = · · · = cn = 0. (7-3)

Similarly, linear dependence of the sequence of vectors v1, . . . , vn ∈ Fm can be phrased
in the following way:

there exist c1, . . . , cn ∈ F such that: c1 · v1 + · · · cn · vn = 0 ∧ not all ci are zero. (7-4)

Instead of saying that a sequence of vectors v1, . . . , vn is linearly (in)dependent, it is also
quite common to simply say that the vectors v1, . . . , vn are linearly (in)dependent. We
will use this way of phrasing things quite often.

Example 7.5

The sequence of vectors consisting of

u =

[
1
2

]
and v =

[
2
4

]
∈ R2

is linearly dependent. Indeed, since v = 2 · u, we see that (−2) · u + v = 0.

This example illustrates a more general principle: two vectors u and v are linearly de-
pendent if and only if one is a scalar multiple of the other. Indeed, if for example
u = c · v, then 1 · u + (−c) · v = 0, showing that the vectors are linearly dependent.
Similarly, if v = c · u, then (−c) · u + 1 · v = 0, again showing that the vectors are lin-
early dependent. Conversely if the vectors are linearly dependent, there exist c, d ∈ F,
not both zero, such that c · u + d · v = 0. If c ̸= 0, then we obtain that u = (−d/c) · v so
that v is a scalar multiple of u. If d ̸= 0, we similarly obtain that v = (−c/d) · u show-
ing that in that case u is a scalar multiple of v. Hence intuitively, one can say that two
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vectors u and v are linearly dependent if and only if there is a line through the origin
containing both u and v.

Example 7.6

The sequence of vectors consisting of

u =

[
1
2

]
and v =

[
2
1

]
∈ R2

is linearly independent. Indeed, we have seen in Example 7.3 that the equation c ·u+ d ·v = 0
implies that c = d = 0.

This example suggests that the linear independence of a sequence of vectors can be
investigated using the theory of systems of linear equations. This is indeed the case and
the general result is the following:

Lemma 7.7

Let vectors v1, . . . , vn ∈ Fm be given and let A ∈ Fm×n be the m × n matrix with
columns v1, . . . , vn, that is

A =

 | |
v1 . . . vn
| |

 .

The sequence of vectors v1, . . . , vn is linearly independent if and only if the homoge-
neous system of linear equations with coefficient matrix A only has the zero vector
0 ∈ Fn as solution.

Proof. First suppose that the sequence of vectors v1, . . . , vn is linearly independent and
let (c1, . . . , cn) ∈ Fn be a solution to the homogeneous system of linear equations with
coefficient matrix A. This system can directly be rewritten as the equation c1 · v1 + · · ·+
cn · vn = 0. Using that we assumed that the sequence of vectors v1, . . . , vn is linearly
independent, we see that (c1, . . . , cn) = (0, . . . , 0).

Now conversely, assume that the homogeneous system of linear equations with coeffi-
cient matrix A only has the zero vector 0 ∈ Fn as solution. If (c1, . . . , cn) ∈ Fn satisfies
c1 · v1 + · · ·+ cn · vn = 0, then we can immediately conclude that (c1, . . . , cn) is also a
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solution to the homogeneous system of linear equations with coefficient matrix A. But
then by assumption, we may conclude that (c1, . . . , cn) = (0, . . . , 0).

This lemma leads to a short characterisation of linear independence:

Theorem 7.8

Let v1, . . . , vn ∈ Fm be given and let A ∈ Fm×n be the matrix with columns v1, . . . , vn.
The sequence of vectors v1, . . . , vn is linearly independent if and only if the matrix
A has rank n.

Proof. This follows from Corollary 6.30 and Lemma 7.7.

Example 7.9

Consider the following three vectors in C3:

u =

 1
0

1 + i

 , v =

 0
1 + i

0

 , and w =

 1 + i
−1 + 5i

2i

 .

1. Are the vectors u, v, w linearly independent?

2. Are the vectors u, v linearly independent?

3. Is the vector u linearly independent?

Answer: The general strategy for this type of questions is to use Theorem 7.8. Recall that
in order to compute the rank of a matrix, it is by Definition 6.22, the definition of the rank
of a matrix, enough to compute its reduced row echelon form. Now let us answer the three
questions, one at the time.

1. Theorem 7.8 implies that to find the answer, we should determine the rank of the matrix

A =

 1 0 1 + i
0 1 + i −1 + 5i

1 + i 0 2i

 .
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We have 1 0 1 + i
0 1 + i −1 + 5i

1 + i 0 2i

 −→
R3 ← R3 − (1 + i) · R1

 1 0 1 + i
0 1 + i −1 + 5i
0 0 0


−→

R2 ← (1 + i)−1 · R2

 1 0 1 + i
0 1 2 + 3i
0 0 0

 .

We can conclude that ρ(A) = 2, which is less than three, the number of vectors we are
considering. Hence the vectors u, v, w are linearly dependent.

2. In this case, we should compute the rank of the matrix

B =

 1 0
0 1 + i

1 + i 0

 .

Using exactly the same elementary row operations as when solving the first questions,
we find that the reduced row echelon form of B is the matrix 1 0

0 1
0 0

 .

In particular, ρ(B) = 2, which is equal to the number of vectors we are considering.
Hence the vectors u, v are linearly independent.

3. If we only consider the vector u, we need to determine the rank of the matrix

C =

 1
0

1 + i

 .

This matrix has rank one, since the one column this matrix has, is not the zero column.
We can conclude that the sequence consisting of the vector u is linearly independent.
In general, a sequence consisting of only one vector u ∈ Fm is linearly independent if
and only if u ̸= 0.

7.2 Matrices and vectors

When studying systems of linear equations, we introduced the notion of a matrix. A
matrix A ∈ Fm×n was introduced as a rectangular scheme containing m× n elements
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from a given field F:

A =

 a11 . . . a1n
...

...
am1 . . . amn

 .

Sometimes one just writes A = [aij]1≤i≤m, 1≤j≤m for brevity. When a matrix is given in
this form, the element aij, sometimes also written as ai,j, is the entry in row i and column
j of the matrix A. It is also common to denote this entry by Aij or Ai,j. The matrix A
given above has m rows: [ai1 . . . ain] for i = 1, . . . , m and n columns: a1j

...
amj

 for j = 1, . . . , n.

We will call rows of a matrix row vectors and similarly columns of a matrix column vectors.

It turns out to be extremely useful to be able to multiply a matrix with a vector. We
define the following:

Definition 7.10

Let A = (aij)1≤i≤m, 1≤j≤m ∈ Fm×n be a matrix and v = (v1, . . . , vn) ∈ Fn a vector.
Then we define A · v ∈ Fm as follows: a11 . . . a1n

...
...

am1 . . . amn

 ·
 v1

...
vn

 =

 a11 · v1 + · · · a1n · vn
...

am1 · v1 + · · · amn · vn



Note that we can not multiply any matrix with any vector. Their sizes have to “fit”:
the number of columns of the matrix has to be the same as the number of entries in
the vector. If this is not the case, the corresponding matrix-vector multiplication is not
defined.

Example 7.11

Let

A =

[
1 2 3
4 5 6

]
and v =

 7
−1
−2

 .
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Compute A · v.

Answer: Using Definition 7.10, we find that:

A · v =

[
1 2 3
4 5 6

]
·

 7
−1
−2

 =

[
1 · 7 + 2 · (−1) + 3 · (−2)
4 · 7 + 5 · (−1) + 6 · (−2)

]
=

[
−1
11

]
.

Note that the matrix vector product occurs very naturally when considering a system
of linear equations. A system of linear equations

a11 · x1 + · · · + a1n · xn = b1
...

...
am1 · x1 + · · · + amn · xn = bm

can be expressed as  a11 · · · a1n
...

...
am1 · · · amn

 ·
 x1

...
xn

 =

 b1
...

bm

 . (7-5)

Now that we have defined a matrix vector product, one may wonder if more generally,
matrices can be multiplied with each other as well. The answer turns out to be yes,
provided again that their sizes fit. More precisely, we can do the following:

Definition 7.12

Let A ∈ Fm×n and B ∈ Fn×ℓ. Suppose that the columns of B are given by b1, . . . , bℓ ∈
Fn, that is to say, suppose that

A =

 | |
b1 . . . bℓ

| |

 .

Then we define

A · B =

 | |
A · b1 . . . A · bℓ

| |

 .
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Note that the matrix product A · B is defined only if the number of columns of A is the
same as the number of rows of B. If these numbers match, then A · B is a matrix with m
rows and ℓ columns. In other words, if A ∈ Fm×n and B ∈ Fn×ℓ, then A · B ∈ Fm×ℓ.

Another way to look at the definition of the matrix product is to give a formula for the
entries of the product A ·B one at the time. Let us say, that we want to find a formula for
the (i, j)-th entry of the product, (A · B)i,j, that is to say, the entry in row i and column
j. This amounts to determining the i-th entry of the product A · bj, where bj is the j-th
column of B. This in turn is exactly the same as the outcome of multiplying the i-th row
of the matrix A with the j-th column of the matrix B. Since the i-th row of A can be
written as equals [ai1 . . . ain] and the j column of B as

bj =

 b1j
...

bmj

 ,

we see that

(A · B)i,j = [ai1 . . . ain] ·

 b1j
...

bnj

 = ai1 · b1j + · · ·+ ain · bnj.

Using the summation symbol from Section 5.3, we can rewrite this formula as follows:

(A · B)i,j =
n

∑
r=1

air · brj. (7-6)

Example 7.13

In this example, let F = R and write

A =

[
1 2 3
4 5 6

]
and B =

 7 0 0
−1 1 0
−2 0 1

 .

Compute, if possible, the matrix products A · B and B ·A.

Answer: First consider the matrix product A · B. Since A ∈ R2×3 and B ∈ R3×3, the product
A · B is defined. We have already computed the product of A and the first column of B in
Example 7.11, so we will not repeat those computations. Taking that into account, we obtain
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that:

A · B =

[
1 2 3
4 5 6

]
·

 7 0 0
−1 1 0
−2 0 1

 =

[
−1 1 · 0 + 2 · 1 + 3 · 0 1 · 0 + 2 · 0 + 3 · 1
11 4 · 0 + 5 · 1 + 6 · 0 4 · 0 + 5 · 0 + 6 · 1

]

=

[
−1 2 3
11 5 6

]
.

Now let us consider the matrix product B ·A. Since B has three columns and A has two rows,
the matrix product B ·A is not defined.

This example shows that in general A ·B ̸= B ·A. In other words, matrix multiplication
is not commutative. In fact, as we have just seen, it may even happen that one of the
products is not defined. Even if both products are defined, the order of the matrices still

matters and A · B ̸= B ·A in general. Consider for example A = [1 0] and B =

[
0
1

]
.

Then

A · B = [1 0] ·
[

0
1

]
= 1 · 0 + 0 · 1 = 0 and B ·A =

[
0
1

]
· [1 0] =

[
0 0
1 0

]
.

Let us define addition of matrices as well.

Definition 7.14

Let A, A′ ∈ Fm×n be given, say

A =

 a11 . . . a1n
...

...
am1 . . . amn

 and A′ =

 a′11 . . . a′1n
...

...
a′m1 . . . a′mn

 .

Then we define A + A′ as follows: a11 . . . a1n
...

...
am1 . . . amn

+

 a′11 . . . a′1n
...

...
a′m1 . . . a′mn

 =

 a11 + a′11 . . . a1n + a′1n
...

...
am1 + a′m1 . . . amn + a′mn

 .

Addition of matrices is only defined if they have the same sizes. On the level of entries,
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we can see that (A + A′)i,j = aij + a′ij. Addition and multiplication of matrices satisfy
many similar rules as summation and multiplication of real or complex numbers. We
collect some in the following theorem. The main exception, as already mentioned be-
fore, is that matrix multiplication is not commutative in general.

Theorem 7.15

Let F be a field. Then

1. A + A′ = A′ + A for all A, A′ ∈ Fm×n.

2. (A + A′) + A′′ = A + (A′ + A′′) for all A, A′, A′′ ∈ Fm×n.

3. A · (B ·C) = (A · B) ·C for all A ∈ Fm×n, B ∈ Fn×ℓ, and C ∈ Fℓ×k.

4. A · (B + B′) = A · B + A · B′ for all A ∈ Fm×n and B, B′ ∈ Fn×ℓ.

5. (A + A′) · B = A · B + A′ · B for all A, A′ ∈ Fm×n and B ∈ Fn×ℓ.

Proof. We will prove the third item only and leave the other parts to the reader. Using
equation (7-6) for the product (B ·C), we obtain that (B ·C)s,j = ∑ℓ

r=1 bsr · crj. Using this
and equation (7-6) for the product A · (B ·C) and rewriting the resulting expression, we
see that:
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(A · (B ·C))i,j =
n

∑
s=1

ais · (B ·C)s,j

=
n

∑
s=1

ais ·
ℓ

∑
r=1

bsr · crj

=
n

∑
s=1

ℓ

∑
r=1

ais · (bsr · crj)

=
n

∑
s=1

ℓ

∑
r=1

(ais · bsr) · crj

=
ℓ

∑
r=1

n

∑
s=1

(ais · bsr) · crj

=
ℓ

∑
r=1

(
n

∑
s=1

ais · bsr

)
· crj

=
ℓ

∑
r=1

(B ·C))i,r · crj

= ((A · B) ·C)i,j.

We finish this section by explaining two more operations on matrices. We have already
seen that vectors can be multiplied with a scalar. The generalisation to matrices is im-
mediate: for c ∈ F and

A =

 a11 · · · a1n
...

...
am1 · · · amn

 ∈ Fm×n, we define c ·A =

 c · a11 · · · c · a1n
...

...
c · am1 · · · c · amn

 . (7-7)

Finally, there is a way to reverse the roles of rows and columns in a matrix A. This is
simply done by taking the transpose of a matrix, which is denoted by AT. More precisely,
given

A =

 a11 . . . a1n
...

...
am1 . . . amn

 ∈ Fm×n, we define AT =

 a11 . . . am1
...

...
a1n . . . amn

 . (7-8)
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Example 7.16

Let the matrix

A =

[
1 2 3
4 5 6

]
∈ R2×3

be given. Compute AT.

Answer:

We have

AT =

[
1 2 3
4 5 6

]T

=

 1 4
2 5
3 6

 .

Note that if A ∈ Fm×n, then AT ∈ Fn×m. On the level of entries, we simply have that
the (i, j)-th entry of AT is equal to the (j, i)-th entry of A.

The transpose behaves well with respect to matrix additions and matrix products. More
precisely, we have the following theorem.

Theorem 7.17

Let F be a field. Then

1. (AT)T = A for all A ∈ Fm×n.

2. (A + A′)T = AT + (A′)T for all A, A′ ∈ Fm×n.

3. (A · B)T = BT ·AT for all A ∈ Fm×n and B ∈ Fn×ℓ.

Proof. We only show the first item. In general, the (i, j)-th entry of BT is equal to the
(j, i)-th entry of B for any matrix B. Applying this first for the matrix AT, then for the
matrix A, we obtain that ((AT)T)i,j = (AT)j,i = (A)i,j. This shows that the matrices AT

and A have exactly the same entries and hence that they are equal.

It is important to remember the order of multiplication in item 3 before and after trans-
posing. In some sense, transposing reverses the order of the terms in a product. There
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is a good reason for this. Given matrices A ∈ Fm×n and B ∈ Fn×ℓ, the product AT · BT

is in general not even defined! Indeed, the number of columns in AT is m, while the
number of rows in BT is ℓ. However, the product BT ·AT makes perfect sense, since the
number of columns in BT is n, which is the same as the number of rows in AT. Though
these observations do not prove item three from Theorem 7.17, they do explain why it
is quite natural that the multiplication order is given as it is.

7.3 Square matrices

If the number of rows and columns of a matrix are the same, it is called a square matrix.
In other words, a matrix A is a square matrix, if A ∈ Fn×n for some positive integer n.
Given n, the n × n matrix In, called the identity matrix, is the matrix having 1’s on its
main diagonal, and 0’s everywhere else. So for n = 4, we have for example

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

This matrix is called the identity matrix because it has no effect on a vector when mul-
tiplied (from the left) with that vector. More precisely, a direct calculation shows that
In · v = v for all v ∈ Fn. Hence the function L : Fn → Fn defined by L(v) = In · v is just
the identity function. With this matrix in place, the following definition makes sense:

Definition 7.18

A square matrix A ∈ Fn×n is called invertible if there exists a matrix B ∈ Fn×n such
that

A · B = B ·A = In.

The matrix B, if it exists, is called the inverse matrix of A and denoted by A−1.

Inverse matrices will appear in many situations later on, but already when solving some
systems of linear equations, they can be handy. Suppose for example, that one wants
to solve the system of linear equations A · x = b, with a square coefficient matrix A,
vector of variables x = (x1, . . . , xn) and righthand-side b = (b1, . . . , bn). If the coefficient
matrix A has an inverse, we can multiply from the left with A−1 and simplify: A−1 · (A ·
x) = (A−1 · A) · x = In · x. But this means that the equation A · x = b implies that
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x = A−1 · b. Conversely, if x = A−1 · b, then by multiplying with A from the left, we
obtain that A · x = A · (A−1 · b) = (A ·A−1) · b = In · b = b. Hence we have shown
that:

A · x = b if and only if x = A−1 · b, provided A−1 exists. (7-9)

This observation actually has a nice consequence about the rank of invertible matrices:

Lemma 7.19

Let A ∈ Fn×n be given and suppose that its inverse matrix exists. Then ρ(A) = n.

Proof. Equation (7-9) implies that the homogeneous system of linear equations A · x = 0
only has the solution x = A−1 · 0 = 0. But then by Corollary 6.30, the rank of A is equal
to n.

More is true, but we will return to that later. The question is now how to figure out
when a matrix has an inverse and if it does, how to compute it. We will first find an
algorithmic answer and after that describe a theoretical characterisation of invertible
matrices.

What we will do first, is to find an algorithm that for a given n× n matrix A, computes
an n× n matrix B such that A · B = In if it exists. Hence the outcome of the algorithm
will either be that such a B does not exist, or it will return such a B. Note that according
to Definition 7.18, the inverse of A, here denoted by B, should satisfy A · B = In and
B · A = In. Fortunately, it turns out that A · B = In implies B · A = In, so that the
algorithm we are about to describe indeed will compute the inverse matrix B = A−1,
provided it exists.

Let us denote the i-th column of the identity matrix In by ei for i = 1, . . . , n. So for
example for n = 4, we have

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , and e4 =


0
0
0
1

 .

The idea of the algorithm to find inverse matrices is the following: we are trying to
find a matrix B ∈ Fn×n such that A · B = In for a given A ∈ Fn×n. Now let us denote
the columns of B as b1, . . . , bn. The i-th column of A · B is by definition of the matrix
product equal to A ·bi, while the i-th column of In is equal to ei. Hence A ·bi = ei for all
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i between 1 and n. Conversely, if A · bi = ei for all i between 1 and n, then the matrices
A · B and In have the same columns, whence A · B = In. Therefore we see that

A · B = In if and only if A · bi = ei for all i between 1 and n.

Therefore, we can find bi, by solving the inhomogeneous system of linear equations
A · x = ei.

From the theory from the previous chapter, we see that to figure out if the system of
equations A · x = ei, it is enough to compute the reduced row echelon form of the
augmented matrix [A|ei]. If ρ(A) = ρ([A|ei]), then according to Corollary 6.27, there
exists a solution and otherwise not. Hence precisely if for all i between 1 and n it holds
that ρ(A) = ρ([A|ei]), we will be able to find a matrix B ∈ Fn×n such that A · B = In.

Now, one could deal with the system of equations A · x = ei for one i at the time and in
that way compute one column of the matrix B at the time, if it exists. However, the first
part of the corresponding augmented matrices is always the same, namely A. Therefore,
it is faster to deal with all n systems at the same time by computing the reduced row
echelon form of the matrix [A|e1|e2| . . . |en] = [A|In].

Hence the algorithm of how to determine if a square matrix A ∈ Fn×n has an inverse,
and if yes how to compute it, is the following:

1. Compute the reduced row echelon form of the n× 2n matrix [A|In]. This can be
done using elementary row operations, just as we did in Section 6.3

2. If the resulting reduced row echelon form is not of the form [In|B], conclude that
A does not have an inverse.

3. If it is of the form [In|B], conclude that A does have an inverse, namely A−1 = B.

To see how this works in practice, let us consider two examples.

Example 7.20

Let F = R and

A =

[
1 2
3 4

]
.

Determine whether or not this matrix has an inverse and if yes, compute it.

Answer: First we determine the reduced row echelon form of the matrix [A|I2]. We obtain:
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[A|I2] =

[
1 2 1 0
3 4 0 1

]
−→

R2 ← R2 − 3 · R1

[
1 2 1 0
0 −2 −3 1

]
−→

R2 ← (−1/2) · R2

[
1 2 1 0
0 1 3/2 −1/2

]
−→

R1 ← R1 − 2 · R2

[
1 0 −2 1
0 1 3/2 −1/2

]
.

Hence we conclude that A has an inverse, namely

A−1 =

[
−2 1
3/2 −1/2

]
.

Example 7.21

Let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Determine whether or not this matrix has an inverse and if yes, compute it.

Answer: We start determining the reduced row echelon form of the matrix [A|I3]. We obtain:

[A|I3] =

 1 2 3 1 0 0
4 5 6 0 1 0
5 7 9 0 0 1


−→

R2 ← R2 − 4 · R1

 1 2 3 1 0 0
0 −3 −6 −4 1 0
5 7 9 0 0 1


−→

R3 ← R3 − 5 · R1

 1 2 3 1 0 0
0 −3 −6 −4 1 0
0 −3 −6 −5 0 1


−→

R3 ← R3 − R2

 1 2 3 1 0 0
0 −3 −6 −4 1 0
0 0 0 −1 −1 1

 .

Even though we have not found the reduced row echelon form of [A|I3] yet, we already
found an echelon form of it. The pivots can already be read off and are contained in the first,
second, and fourth columns of the matrix. When proceeding to find the reduced row echelon
form, the first three entries of the third row will remain zero. The reader is encouraged to
compute the reduced echelon form and see that this indeed is true. Hence the reduced row
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echelon form of [A|I3] will not be of the form [I3|B]. We conclude that the matrix A does not
have an inverse.

In principle, we now have an algorithm that can determine if a square matrix has an
inverse and if yes, computes it. However, we have not shown that the algorithm is
correct. In other words, if we follow the steps of the algorithm, will the outcome always
be what it should be? First of all, we should make sure that if the reduced row echelon
form of the n× 2n matrix [A|In] is not of the form [In|B], then A indeed has no inverse.
And second of all, we should make sure that if a matrix B ∈ Fn×n satisfies A · B = In,
then also B ·A = In, so that we indeed can conclude that B is the inverse of A. We will
address these issues in the rest of this section. It turns out that everything is as it should
be and one can show that:

A−1 exists ⇔ the reduced row echelon form of [A|In] is of the form [In|B]
⇔ ρ(A) = n (that is: the rank of A is n). (7-10)

A reader willing to accept this without proof can skip the remainder of this section, but
for the other readers we will give a proof below.

Theorem 7.22

Let A ∈ Fn×n be a square matrix. Then the following statements are logically equiv-
alent:

1. The reduced row echelon form of the n× 2n matrix [A|In] is of the form [In|B]
for some square matrix B ∈ Fn×n.

2. There exists a square matrix B ∈ Fn×n such that A · B = In.

Proof. Let us assume that the reduced row echelon form of the matrix [A|In] is of the
form [In|B] for some square matrix B ∈ Fn×n. Let us denote by bi the i-th column of
the matrix B. Then using the same elementary row operations to transform the matrix
[A|In] into the form [In|B] can be used to transform the matrix [A|ei] into [In|bi]. Since
[In|bi] is in reduced row echelon form, we can conclude that the reduced row echelon
form of the matrix [A|ei] is equal to [In|bi]. This implies that bi is a solution to the system
of linear equations A · x = ei. But then A · B = In. In particular A · B = In for some
square matrix B ∈ Fn×n, namely the matrix occurring in the right part of the reduced
row echelon form of [A|In].
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Now conversely, suppose that A · B = In for some square matrix B ∈ Fn×n. Then
for all i from 1 to n, the system of linear equations A · x = ei has a solution, namely
the i-th column of the matrix B. We claim that the reduced row echelon form of [A|In]
only contains pivots in its first n columns. We will proof this claim using a proof by
contradiction. Assume therefore that the reduced row echelon form of [A|In] in fact
has a pivot contained in a column with index n + i for some i > 0. Then the reduced
row echelon form of the matrix [A|ei] would contain a pivot in its (n + 1)-th column.
In particular, A and [A|ei] would not have the same rank. But then by Corollary 6.27,
the system A · x = ei has no solution. Since we already observed that it does have a
solution, we obtain a contradiction. This proves the claim that the reduced row echelon
form of [A|In] only contains pivots in its first n columns. Next, we claim that the rank
of [A|In] is equal to n. To obtain a contradiction, suppose that the reduced row echelon
form of [A|In] contains a zero row. Considering the second part of the matrix, In, we can
conclude that there exist a sequence of elementary row operations that can transform In
into a matrix for a zero row. But In is a matrix with rank n, while an n× n matrix with
a zero row can have rank at most n− 1. This proves the second claim. Combining the
two claims, we conclude that the reduced row echelon form of [A|In] contains a pivot
in each of its first n columns. But then it is of the form [In|C] for some square matrix
C ∈ Fn×n.

Corollary 7.23

Let A ∈ Fn×n be given. Then there exists B ∈ Fn×n such that A · B = In if and only
if ρ(A) = n.

Proof. If A · B = In for some B ∈ Fn×n, then by Theorem 7.22 the reduced row echelon
form of the n× 2n matrix [A|In] is of the form [In|C] for some C ∈ Fn×n. But then the
reduced row echelon form of A itself is In, implying that ρ(A) = n.

Conversely, if ρ(A) = n, the reduced row echelon form of A is equal to In. But then
the reduced row echelon form of [A|In] is of the form [In|C] for some square matrix
C ∈ Fn×n. By Theorem 7.22, we may conclude that there exists B ∈ Fn×n such that
A · B = In.
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Corollary 7.24

Let A ∈ Fn×n be a square matrix and suppose that there exists a square matrix
B ∈ Fn×n such that A · B = In. Then B ·A = In and therefore B = A−1, the inverse
of A.

Proof. To conclude that B is the inverse of A, we need to show that A · B = B ·A = In.
Since we are given that A · B = In, what is left to show, is that B ·A = In.

Now note that A · (B ·A) = (A · B) ·A = In ·A = A = A · In. Hence A · (B ·A− In) =
A · (B ·A)−A · In = 0, where here 0 denotes the n× n zero matrix.

Note that the previous equation implies that any column of B ·A− In is a solution to the
homogeneous system of equations A · x = 0. On the other hand, the previous corollary
implies that the matrix A has rank n. Hence, we know from Corollary 6.30 that the
system A · x = 0 only has the solution x = 0. Hence all columns of B ·A− In are zero,
implying that B ·A = In. This is exactly what we needed to show.

Corollary 7.25

Let A ∈ Fn×n be given. Then its inverse matrix exists if and only if ρ(A) = n.

Proof. This follows from the previous two corollaries.
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