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Note 10

Linear maps between vector spaces

Given two vector spaces V1 and V2, both over the same field F, a linear map is a function
from V1 to V2 that is compatible with scalar multiplication and vector addition. More
precisely, we have the following:

Definition 10.1

Let V1 and V2 be vector spaces over a field F. Then a linear map from V1 to V2 is a
function L : V1 → V2 such that:

1. L(u + v) = L(u) + L(v) for all u, v ∈ V1,

2. L(c · u) = c · L(u) for all c ∈ F and u ∈ V1.

A linear map is also called a linear transformation. Note that in the formula L(u + v) =
L(u) + L(v), the + in u + v denotes vector addition in V1, while the + in L(u) + L(v)
denotes vector addition in V2. Similarly, in the formula L(c · u) = c · L(u), the · in c · u
denotes the scalar multiplication in V1, while in c · L(u), it denotes the scalar multipli-
cation in V2.

While in the previous chapter, we studied one vector space at the time, linear maps
connect different vector spaces with each other. Linear maps respect the vector space
structure: choosing the scalar c equal to 0 and using equation (9-1), one obtains for
example

L(0) = 0, (10-1)
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where the 0 on the left-hand side of the equation denotes the zero vector in V1 and the
one on the right denotes the zero vector in V2. Similarly, choosing c = −1 and using
equation (9-2), one obtains that

L(−u) = −L(u). (10-2)

Of course, there are many possible functions between two vector spaces and in general
not many will be linear. Let us consider some examples.

Example 10.2

Consider the following function from R to R. Which ones are linear maps?

1. f : R→ R defined by x 7→ x2,

2. g : R→ R defined by x 7→ 2x + 1,

3. h : R→ R defined by x 7→ 2x.

Answer:

1. f : R→ R defined by x 7→ x2. This is not a linear map. We have for example f (1+ 1) =
f (2) = 4, but if f would have been a linear map, we should have had f (1 + 1) =

f (1) + f (1) = 1 + 1 = 2.

2. g : R → R defined by x 7→ 2x + 1. This is not a linear map either, even though the
graph of this function is a line. We have g(0) = 1, but if g would have been a linear
map, we should have had g(0) = 0 by equation 10-1.

3. h : R → R defined by x 7→ 2x. This is a linear map. For all x, y ∈ R we have
h(x + y) = 2(x + y) = 2x + 2y = h(x) + h(y) and for all c ∈ R and x ∈ R, we have
c · h(x) = c2x = 2cx = h(c · x).

More general, linear maps from R to R are precisely those functions whose graph is a
straight line passing through the origin. In other words, they are functions L : R → R

such that x 7→ a · x for some constant a ∈ R. The reason is that if L : R → R is a linear
map, then for all x ∈ R, we have L(x) = L(x · 1) = x · L(1). In the last equality, we used
property 2 from Definition 10.1. Setting a = L(1), we indeed obtain that L(x) = a · x for
all x ∈ R.
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We will see that there is a strong connection between linear maps and matrices. For this
reason, we start with studying linear maps coming from matrices and afterwards return
to studying linear maps in a more general setting.

10.1 Linear maps using matrices

Let us start by defining a large class of linear maps.

Definition 10.3

Let F be a field. Given a matrix A ∈ Fm×n, define the function LA : Fn → Fm by
defining LA(v) = A · v for all v ∈ Fn.

It turns out that all functions LA : Fn → Fm defined above are linear.

Lemma 10.4

The function LA : Fn → Fm in Definition 10.3 is a linear map.

Proof. We need to check the two conditions from Definition 10.1. First of all

LA(u + v) = A · (u + v)
= A · u + A · v
= LA(u) + LA(v), for all u, v ∈ Fn.

Secondly:

LA(c · u) = A · (c · u) = c · (A · u) = c · LA(u) for all c ∈ F and u ∈ Fn.

In Example 10.2, we saw that the function h : R → R, x 7→ 2x was a linear map. It
is actually a very special case of Definition 10.3: if we choose n = m = 1, F = R and
A = [2] in Definition 10.3, we find the function h. Instead of A = [2], we could also just
have written A = 2. Indeed, when writing down a 1× 1 matrix, it is quite common to
leave the brackets [ ] out.
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Example 10.5

Let F = R and choose

A =

[
1 1 1 1
1 2 3 4

]
∈ R2×4.

Then the corresponding linear map LA : R4 → R2 works as follows:

LA




v1

v2

v3

v4


 =

[
1 1 1 1
1 2 3 4

]
·


v1

v2

v3

v4

 =

[
v1 + v2 + v3 + v4

v1 + 2v2 + 3v3 + 4v4

]
.

So for example

LA



−1
1
0
0


 =

[
0
1

]
, LA




0
2
−1
1


 =

[
2
5

]
and LA




1
−1
−1
1


 =

[
0
0

]
.

As Example 10.5, it is possible that a linear map LA maps a vector to the zero vector.
The set of such vectors has a special name:

Definition 10.6

Let F be a field. Given a matrix A ∈ Fm×n, the of the matrix A, denoted by ker A, is
the following set of vectors:

ker A = {v ∈ Fn | A · v = 0} .

Note that one can equivalently define the kernel of a matrix A to be all vectors from
Fn that are mapped to the zero vector by the linear map LA. We can also think of the
vectors in the kernel as precisely those vectors that are solutions to the homogeneous
system of linear equations with coefficient matrix A.
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Remark 10.7

A remark about terminology is in place here. Some authors prefer to use the words
null space, right kernel or right null space for what we have called the kernel of a matrix.
The reason for adding the word “right” is that we have multiplied the matrix with a
column vector from the right. One could also have considered the set of row vectors
u ∈ F1×m such that u ·A = 0. This set is called the left kernel of A or sometimes also
the left null space.

One of the reasons that we introduced the notion of kernel of a matrix, is that it actually
is a subspace. Let us show this in the following lemma.

Lemma 10.8

Let F be a field and A ∈ Fm×n a matrix. Then the kernel of A is a subspace of Fn.

Proof. First of all, note that 0 ∈ ker A so that ker A is not the empty set. This means that
if we set W = ker A, then the requirement that W is not empty in Lemma 9.33 is met.

Let u, v ∈ ker A and c ∈ F. Then

A · (u + c · v) = A · u + A · (c · v) = A · u + c · (A · v) = 0 + c · 0 = 0. (10-3)

Here we used that A · u = 0 and A · v = 0, since u, v ∈ ker A. Equation (10-3) implies
that u + c · v ∈ ker A. Then Lemma 9.33 implies that ker A is a subspace of Fn.

The dimension of ker A is called the nullity of the matrix A. It is denoted by nullA.

Example 10.9

Let F = R and consider the matrix

A =

[
1 1 1 1
1 2 3 4

]
.

Compute a basis for ker A and compute the nullity of A.
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Answer: The kernel of A consists of all vectors v = (v1, v2, v3, v4) ∈ R4 such that A · v = 0.
We have for example seen in Example 10.5 that the vector (1,−1,−1, 1) is mapped to (0, 0)
by the linear map LA. Therefore (1,−1,−1, 1) ∈ ker A.

We can think of the vectors in the kernel as precisely those vectors that are solutions to the
homogeneous system of two linear equations with coefficient matrix A. To describe all these
solutions, we follow the same procedure as explained in Example 6.28 and Theorem 6.29.
Hence, we first bring the matrix A in reduced row echelon form:[

1 1 1 1
1 2 3 4

]
−→

R2 ← R2 − R1

[
1 1 1 1
0 1 2 3

]
−→

R1 ← R1 − R2

[
1 0 −1 −2
0 1 2 3

]
.

Now we can see that v = (v1, v2, v3, v4) ∈ ker A if and only if v1 − v3 − 2v4 = 0 and v2 +

2v3 + 3v4 = 0. Similarly as in Example 6.28 (or directly using Theorem 6.29), we see that

ker A =

t1 ·


1
−2
1
0

+ t2 ·


2
−3
0
1

 | t1, t2 ∈ R

 .

Hence the vectors 
1
−2
1
0

 and


2
−3
0
1


span ker A. In fact, Corollary 9.39 tells us that these two vectors form a basis of ker A. Hence
a basis for ker A is given by 


1
−2
1
0

 ,


2
−3
0
1


 .

The nullity of the matrix A is by definition the dimension of the subspace ker A. Since we
have just computed a basis of ker A and this basis consists of two vectors, we conclude that
the nullity of A is two. In other words: nullA = 2.

We have already observed that we can think of the vectors in the kernel as precisely
those vectors that are solutions to the homogeneous system of linear equations with
coefficient matrix A. Using Corollary 9.39, we obtain the following result, which often
is called the rank-nullity theorem for matrices.
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Theorem 10.10

Let F be a field and A ∈ Fm×n a matrix. Then

ρ(A) + null(A) = n,

where ρ(A) denotes the rank of the matrix A and null(A) its nullity.

Proof. Using Corollary 9.39, we see that the kernel of A has a basis containing precisely
n − ρ(A) many vectors. Hence null(A) = dim ker(A) = n − ρ(A). This implies that
ρ(A) + null(A) = n.

We have seen in Lemma 10.8, that the kernel of a matrix A ∈ Fm×n is a linear subspace
of Fn. In other words: ker A is a linear subspace of the domain of the linear map LA :
Fn → Fm. To a matrix A ∈ Fm×n one can also associate a linear subspace of Fm, the
codomain of the linear map LA : Fn → Fm. We do this in the following definition.

Definition 10.11

Let F be a field. Given a matrix A ∈ Fm×n, the column space of the matrix A, denoted
by colspA, is the subspace of Fm spanned by the columns of A. The dimension of
the column space of a matrix A is called the column rank of A.

Lemma 10.12

Let F be a field and A ∈ Fm×n a matrix. Then colspA, the column space of the matrix
A is precisely the image of the linear map LA : Fn → Fm.

Proof. An element from the column space of a matrix A is by definition a linear combi-
nation of the columns of A. On the other hand, an element of the image of the linear
map LA : Fn → Fm is of the form A · v for some vector v = (v1, . . . , vn) ∈ Fn. Using
Definition 7.10, we can rewrite this as the linear combination of the columns of A as
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follows:

A · v =

 a11 . . . a1n
...

...
am1 . . . amn

 ·
 v1

...
vn

 = v1 ·

 a11
...

am1

+ · · · vn ·

 a1n
...

amn

 .

Hence the image of the linear map LA consists precisely of all linear combinations of the
columns of A. But this is precisely the column space of the matrix A.

Remark 10.13

Because of Lemma 10.12, the column space of a matrix A is sometimes also called
the range or the image of A.

We have previously introduced the rank of a matrix in Definition 6.22. The rank ρ(A) of
a matrix A as defined in Definition 6.22 is sometimes more properly called the row rank
of the matrix A, since one can show that the dimension of the vector space spanned by
the rows of A is equal to ρ(A). It turns out however, that for any matrix, its row rank
and column rank are the same. Therefore, we will from now on simply call the column
rank of a matrix A, the rank of the matrix and denote it by ρ(A), using the same notation
as in Definition 6.22.

It is not obvious from Definitions 6.22 and 10.11 that row rank and column rank of a
matrix are always the same. A reader willing to accept this can skip the remainder of
this section, but for the interested reader, we give a short proof of why row rank and
column rank are always the same.

Theorem 10.14

Let F be a field and A ∈ Fm×n a matrix. Then the row rank and the column rank of
the matrix A are the same.

Proof. The row rank ρ(A) of a matrix A is by definition equal to the number of pivots in
the reduced row echelon form of A. On the other hand, Theorem 9.38 implies that the
number of vectors in a basis of the column space of A is also equal to this number of
pivots. Hence the dimension of the column space of A is also equal to ρ(A).
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10.2 Linear maps between general vector spaces

In the previous section, we have focused on linear maps coming from matrices, but
Definition 10.1 allows for much more general linear maps. It turns out that the notions
of kernel and image also make sense in the general setting. Let us first consider some
more examples.

Example 10.15

Let F = C and consider the complex vector space C[Z] (see Example 9.6). Recall that C[Z]
denotes the set of all polynomials with coefficients in C. Now consider the map D : C[Z] →
C[Z] defined by D(a0 + a1Z + a2Z2 + · · · + anZn) = a1 + 2a2Z + · · · + nanZn−1. In words,
the map D sends a polynomial p(Z) to its derivative p(Z)′. One can show that D is a linear
map.

Example 10.16

Let V1 = Fn×n and V2 = F. Given a square matrix A ∈ Fn×n, the trace, denoted by Tr(A), is
defined as the sum of the elements on its diagonal. In other words:

Tr


 a11 . . . a1n

...
...

an1 . . . ann


 = a11 + · · ·+ ann.

Question: Is the map Tr : Fn×n → F, defined by A 7→ Tr(A) a linear map?

Answer: To find out whether or not the trace map Tr : Fn×n → F as defined above, is linear,
we check if all conditions in Definition 10.1 are satisfied. First of all, using the notation from
Definition 10.1, we have V1 = Fn×n and V2 = F. We should first check that these are vector
spaces over a field F. Both are indeed vector spaces over F: For V1, see Example 9.5 with
m = n and for V2, see Example 9.2 with n = 1.

Now we need to check if Tr satisfies the two conditions from Definition 10.1. Let us choose
arbitrary c ∈ F and u, v ∈ Fn×n. Hence we can write

u =

 a11 . . . a1n
...

...
an1 . . . ann

 and v =

 b11 . . . b1n
...

...
bn1 . . . bnn

 .



Note 10 10.2 LINEAR MAPS BETWEEN GENERAL VECTOR SPACES 10

Then

u + v =

 a11 . . . a1n
...

...
an1 . . . ann

+

 b11 . . . b1n
...

...
bn1 . . . bnn

 =

 a11 + b11 . . . a1n + b1n
...

...
an1 + bn1 . . . ann + bnn


and

c · u = c ·

 a11 . . . a1n
...

...
an1 . . . ann

 =

 c · a11 . . . c · a1n
...

...
c · an1 . . . c · ann

 .

Hence

Tr(u + v) = a11 + b11 + · · · ann + bnn = a11 + · · · ann + b11 + · · · bnn = Tr(u) + Tr(v)

and
Tr(c · u) = c · a11 + · · · c · ann = c · (a11 + · · · ann) = c · Tr(u).

We can conclude that Tr : Fn×n → F, defined by A 7→ Tr(A) is a linear map.

Example 10.17

Let F = R and consider the map m5 : R2 → R2 defined by m5(v1, v2) = (5v1, 5v2). In
other words, the effect of map m5 on a vector is that it multiplies a vector with the scalar 5.
Visually, this means that the direction of a vector is not changed, but its length becomes five
times longer. One can show that this is a linear map of real vector spaces.

More generally, one can show that if F is a field and c ∈ F is a scalar, then the map mc : Fn →
Fn defined by mc(u) = c · u is a linear map of vector spaces.

Example 10.18

For α ∈ R, consider the map Rα : R2 → R2 defined by Rα(v1, v2) = (cos(α) · v1 − sin(α) ·
v2, sin(α) · v1 + cos(α) · v2). Geometrically, the effect of Rα on (v1, v2) ∈ R2 is a rotation over
an angle α against the clock, where the rotation has center in (0, 0). For example, if α = π/2,
then Rπ/2(v1, v2) = (−v2, v1). One can show that Rα is a linear map.

Example 10.19

We choose F = C. Let V1 be the set of polynomials in C[Z] of degree at most three and
similarly let V2 be the set of polynomials in C[Z] of degree at most four. Both V1 and V2 are
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vector spaces over C. A possible basis for V1 is given by the set {1, Z, Z2, Z3}, while a basis for
V2 is {1, Z, Z2, Z3, Z4}. Hence dim V1 = 4 and dim V2 = 5. Now define the map L : V1 → V2

by p(Z) 7→ (i + 2Z) · p(Z). Note that indeed for any p(Z) ∈ V1, we have (i + 2Z) · p(Z) ∈ V2

using equation (4-1). One can show that L is a linear map. Indeed, if p1(Z), p2(Z) ∈ V1 and
c ∈ C one has

L(p1(Z) + p2(Z)) = (i + 2Z) · (p1(Z) + p2(Z))

= (i + 2Z) · p1(Z) + (i + 2Z) · p2(Z)

= L(p1(Z)) + L(p2(Z))

and
L(c · p1(Z)) = (i + 2Z) · c · p1(Z) = c · (i + 2Z) · p1(Z) = c · L(p1(Z)).

Example 10.20

As a final example of a linear map, we consider the map ev : C[Z] → C2 defined by p(Z) 7→
(p(0), p(1)). So for example L(Z2 + Z + 1) = (02 + 0 + 1, 12 + 1 + 1) = (1, 3). One can show
that ev is a linear map.

We finish this section with some general properties of linear maps. First we consider
the composition of two linear maps, see Section 2.2 for the definition of the composite
of two functions.

Theorem 10.21

Let F be a field and V1, V2, V3 vector spaces over F. Further, suppose that L1 : V1 →
V2 and L2 : V2 → V3 are linear maps. Then the composition L2 ◦ L1 : V1 → V3 is also
a linear map.

Proof. Let us choose arbitrary u, v ∈ V1 and c ∈ F. Then using linearity of L1 and L2 as
well as the definition of the composition of two functions, we obtain that

(L2 ◦ L1)(u + v) = L2(L1(u + v))
= L2(L1(u) + L1(v))
= L2(L1(u)) + L2(L1(v))
= (L2 ◦ L1)(u) + (L2 ◦ L1)(v).



Note 10 10.2 LINEAR MAPS BETWEEN GENERAL VECTOR SPACES 12

and

(L2 ◦ L1)(c · u) = L2(L1(c · u)) = L2(c · L1(u)) = c · L2(L1(u)) = c · (L2 ◦ L1)(u).

Hence by Definition 10.1, the map L2 ◦ L1 : V1 → V3 is a linear map.

Since any function f : A→ B has an image, namely the set image( f ) = { f (a) | a ∈ A},
see Section 2.2, a linear map L : V1 → V2 has an image as well. In view of Lemma 10.12,
this generalizes the idea of the notion of the column space of a matrix to the setting of
general linear maps. One can show that the image of a linear map L : V1 → V2 is a
subspace of V2. The notion of a kernel can also directly be generalized.

Definition 10.22

Let F be a field and V1 and V2 vector spaces over F. Given a linear map L : V1 → V2,
the kernel of the map L is:

ker L = {v ∈ V1 | L(v) = 0} .

Similarly as in the case of the kernel of a matrix, one can show that the kernel of a linear
map L : V1 → V2 is a subspace of V1.

Example 10.23

Let us revisit Example 10.15. We considered the linear map D : C[Z] → C[Z], sending a
polynomial p(Z) to its derivative. The only polynomials whose derivative is 0 are constant
polynomials, that is to say polynomials of the form p(Z) = a0. Hence ker D = {a0 | a0 ∈
C} = C. Note that {1} is a basis of ker D, so that we can conclude that dim ker D = 1.

With a view to a later application of the theory to differential equations, we consider
another example involving derivatives.
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Example 10.24

Let C∞ be the vector space of all infinitely differentiable functions from R to R, see Example
9.35. Let us consider the map L : C∞ → C∞ where f 7→ f ′ − f . As usual f ′ denotes the
derivative of the function f . Since f ∈ C∞, also f ′ is infinitely often differentiable, so that
f ′ ∈ C∞. One can show that L is a linear map. Using Definition 10.22, we see that ker L =

{ f ∈ C∞ | f ′ − f = 0}. In other words: the kernel of L consists of those functions f ∈
C∞ such that the derivative of f is the same as f itself. In yet other words: the kernel of
L consists exactly of all solutions in C∞ of the differential equation f ′ = f . An example
of a function satisfying this differential equation is the exponential function exp : R → R

defined by x 7→ ex. Also all scalar multiples f = c · exp with c ∈ R, are solutions to the
differential equation f ′ = f . It is in fact possible to show that there are no more solutions
in C∞. Hence ker L turns out to be a one-dimensional subspace of C∞ with basis {exp}.

Remark 10.25

The exponential function was also discussed in Example 2.22, but there its codomain
was defined to be R≥0. Strictly speaking, the exponential function from Example 2.22
is therefore not the same function as the exponential function we used in this example.
However, since both functions map any x ∈ R to exactly the same value, namely ex, it
is a bit overkill to use different notations for these functions. For this reason we have
denoted both functions with exp.

Example 10.26

As a final example of the kernel of a linear map, we consider the map ev from Example 10.20.
The map ev : C[Z]→ C2 was defined by p(Z) 7→ (p(0), p(1)). Hence we have

ker ev = {p(Z) ∈ C[Z] | (p(0), p(1)) = (0, 0)} = {p(Z) ∈ C[Z] | p(0) = 0 ∧ p(1) = 0}.

It is possible to describe the kernel of ev more specifically. Let us start by describing the set
of polynomials p(Z) satisfying p(0) = 0, that is to say, such that 0 is a root of p(Z). Using
Lemma 4.20, we conclude that

{p(Z) ∈ C[Z] | p(0) = 0} = {Z · q(Z) | q(Z) ∈ C[Z]}.

Now if both p(0) = 0 and p(1) = 0, then we see that p(Z) = Z · q(Z) for some q(Z) ∈ C[Z],
and p(1) = 0. But this is equivalent with saying that p(Z) = Z · q(Z) for some q(Z) ∈
C[Z] and q(1) = 0. Using Lemma 4.20 again, but now for q(Z) and the root 1, we see that
q(Z) = (Z − 1) · s(Z) for some s(Z) ∈ C[Z]. Hence we obtain p(Z) ∈ ker ev if and only if
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p(Z) = Z · (Z− 1) · s(X) for some s(Z) ∈ C[Z]. We conclude that

ker ev = {p(Z) ∈ C[Z] | p(0) = 0 ∧ p(1) = 0} = {Z · (Z− 1) · s(Z) | s(Z) ∈ C[Z]}.

10.3 Linear maps between finite dimensional vector
spaces

Let us assume that we are given a finite dimensional vector space V over a field F, say
dim V = n. In such a setting, we can choose an ordered basis of V, say β = (v1, . . . , vn),
where v1, . . . , vn are linearly independent vectors in V. As we have seen in Definition
9.17, for each v ∈ V, we can produce a unique coordinate vector [v]β ∈ Fn. This means
that we can define a function ϕβ : V → Fn by v 7→ [v]β. Now combining Lemma
9.18 and Definition 10.1, we can immediately conclude that the function ϕβ is a linear
map. Given a vector (c1, . . . , cn) ∈ Fn, it is simple to write down a vector of V having
(c1, . . . , cn) as its coordinate vector (with respect to β). Indeed, the vector v = c1 · v1 +
· · ·+ cn · vn is that vector and it is the only vector with coordinates (c1, . . . , cn) according
to Lemma 9.16! What we in fact have found is the inverse function of ϕβ. Let us put
these statements in a lemma and give a complete proof.

Lemma 10.27

Let F be a field, V a vector space over F of dimension n, and β = (v1, . . . , vn), an
ordered basis of V. Then the function ϕβ : V → Fn defined by v 7→ [v]β is a linear
map. Moreover, the function ψβ : Fn → V defined by (c1, . . . , cn) 7→ c1 · v1 + · · ·+
cn · vn is the inverse of ϕβ and also a linear map.

Proof. We have already shown in the discussion before this lemma that ϕβ : V → Fn is a
linear map of vector spaces over F. Now let us denote by ψβ : Fn → V the map defined
by (c1, . . . , cn) 7→ c1 · v1 + · · ·+ cn · vn. We first show that ψβ is the inverse function ϕ−1

β .
In order to check this, we need to show that ψβ ◦ ϕβ(v) = v for all v ∈ V as well as that
ϕβ ◦ ψβ(c1, . . . , cn) = (c1, . . . , cn) for all (c1, . . . , cn) ∈ Fn. We have

(ψβ ◦ ϕβ)(v) = ψβ([v]β) = v

and
(ϕβ ◦ ψβ)(c1, . . . , cn) = ϕβ(c1 · v1 + · · ·+ cn · vn) = (c1, . . . , cn).
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It is left to the reader to check that ψβ is a linear map.

The reason the linear maps ϕβ and ψβ are so useful, is that they can be used to describe
a general linear map more explicitly. More to the point, suppose that we are given a
linear map L : V1 → V2 as in Definition 10.1, but that we know that both V1 and V2
are finite dimensional vector spaces, say that dim V1 = m and dim V2 = n. This means
that we can choose an ordered basis of V1, say β = (v1, . . . , vm), where v1, . . . , vm are
linearly independent vectors in V1. Similarly, we can choose an ordered basis of V2, say
γ = (w1, . . . , wn), where w1, . . . , wn ∈ V2 are linearly independent vectors in V2. Then
instead of studying the abstract linear map L : V1 → V2, we will study the function
ϕγ ◦ L ◦ ψβ : Fm → Fn. The effect is that the abstract vector spaces V1 and V2 have been
replaced by the more down to earth vector spaces Fm and Fn. Using Theorem 10.21
in combination with Lemma 10.27, we can also conclude that the function ϕγ ◦ L ◦ ψβ

actually is a linear map of vector spaces over F, since it is the composite of linear maps.

We have in Section 10.1 seen that any matrix A ∈ Fm×n gives rise to a linear map
LA : Fm → Fn, by defining v 7→ A · v. In fact, any linear map from Fm to Fn is of
this form. Let us show this now:

Lemma 10.28

Let F be a field and L̃ : Fm → Fn a linear map. Then there exists exactly one matrix
A ∈ Fm×n such that L̃ = LA. Moreover, if we denote by e1, . . . , em the standard basis
of Fm, then A is the matrix whose columns consist of L̃(e1), . . . , L̃(em).

Proof. If v = (c1, . . . , cm) ∈ Fm, then v = c1 · e1 + · · ·+ cm · em, since the i-th standard
basis vector of Fm has a one in coordinate i and zeroes otherwise. Since L̃ is a linear map,
we have L̃(v) = L̃(c1 · e1 + · · ·+ cm · em) = c1 · L̃(e1)+ · · ·+ cm · L̃(em). Hence the matrix
A with columns L̃(e1), . . . , L̃(em) satisfies that A · v = c1 · L̃(e1) + · · · + cm · L̃(em) =
L̃(v). This shows that L̃ = LA.

What is left to show is that the matrix A is unique. Suppose that there exist another
matrix B ∈ Fm×n such that L̃ = LB. We want to show that A = B. If A ̸= B, one
can find a column, say column i, where the matrices A and B are distinct. Note that
the ith column of A equals L̃(ei) by construction of the matrix A. On the other hand,
L̃(ei) = LB(ei) = B · ei, which is precisely the ith column of B. Apparently, the ith
columns of A and B are both equal to L(ei) and not distinct after all. This contradiction
show that the assumption A ̸= B cannot be valid and therefore that A = B.
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Given a linear map L : V1 → V2 we will apply this lemma to the associated linear map
L̃ = ϕγ ◦ L ◦ ψβ : Fm → Fn. Let us before continuing with the general theory, first
consider an example.

Example 10.29

We revisit Example 10.19. In that example V1 was the vector space consisting of polynomials
in C[Z] of degree at most three and V2 the vector space of polynomials in C[Z] of degree at
most four. Hence as ordered basis for V1, we can choose β = (1, Z, Z2, Z3), while a possible
ordered basis for V2 is given by γ = (1, Z, Z2, Z3, Z4). The linear map L : V1 → V2 described
in Example 10.19 mapped a polynomial p(Z) to (i + 2Z) · p(Z).

Let us start by explaining what the linear map ϕγ : V2 → F5 is in this case. An element in V2

is a polynomial of degree at most four. Hence v ∈ V2 is a polynomial of the form a0 + a1Z +

· · · + a4Z4 with a0, a1, . . . , a4 ∈ C, which is already written as a linear combination of the
vectors in the ordered basis (1, Z, . . . , Z4). Hence ϕγ(a0 + a1Z + · · ·+ a4Z4) = (a0, a1, . . . , a4),
or in vector notation:

ϕγ(a0 + a1Z + · · ·+ a4Z4) =


a0

a1
...

a4

 .

Similarly,

ψβ




b0

b1

b2

b3


 = b0 + b1Z + b2Z2 + b3Z3.

We can describe the linear map L by figuring out what happens with the vectors in the cho-
sen ordered basis β when L is applied. It is convenient to express the outcome as a linear
combination of the vectors in the chosen ordered basis γ. We obtain:

L(1) = (i + 2Z) · 1 = i + 2Z, L(Z) = (i + 2Z) · Z = iZ + 2Z2,

L(Z2) = (i + 2Z) · Z2 = iZ2 + 2Z3, L(Z3) = (i + 2Z) · Z3 = iZ3 + 2Z4.

Now let us compute the matrix A described in Lemma 10.28. We need to compute L̃(ei) for
i = 1, . . . , 4, where (e1, e2, e3, e4) is the standard ordered basis of F4 and L̃ = ϕγ ◦ L ◦ ψβ :
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F4 → F5. Then we find:

L̃(e1) = (ϕγ ◦ L ◦ ψβ) (e1) = (ϕγ ◦ L ◦ ψβ)




1
0
0
0




= (ϕγ ◦ L)(1)

= ϕγ(i + 2Z)

=


i
2
0
0
0


and similarly

L̃(e2) =


0
i
2
0
0

 , L̃(e3) =


0
0
i
2
0

 , and L̃(e4) =


0
0
0
i
2

 .

Using Lemma 10.28, we see that L̃ = ϕγ ◦ L ◦ ψβ = LA, where

A =


i 0 0 0
2 i 0 0
0 2 i 0
0 0 2 i
0 0 0 2

 .

Definition 10.30

Let F be a field and L : V1 → V2 a linear map between two finite dimensional vector
spaces, say dim V1 = m and dim V2 = n. Let β be an ordered basis of V1 and γ one of
V2. Then we denote with γ[L]β ∈ Fm×n the matrix described in Lemma 10.28 when
applied to the linear map L̃ = ϕγ ◦ L ◦ ψβ : Fm → Fn. We say that the matrix γ[L]β
is the matrix representation of L with respect to the ordered bases β and γ. One also
calls γ[L]β the mapping matrix of L with respect to the ordered bases β and γ.
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To avoid unnecessary computations, let us describe the mapping matrix γ[L]β more
directly:

Lemma 10.31

Let F be a field and L : V1 → V2 a linear map between two finite dimensional vector
spaces, say dim V1 = m and dim V2 = n. Let β = (v1, . . . , vn) be an ordered basis of
V1 and γ one of V2. Then the mapping matrix of L with respect to the ordered bases
β and γ has [L(v1)]γ, . . . , [L(vn)]γ as columns. That is to say:

γ[L]β = [[L(v1)]γ · · · [L(vn)]γ].

Proof. Combining Definition 10.30 and Lemma 10.28, we see that γ[L]β has columns
L̃(e1), . . . , L̃(en), where e1, . . . , en is the standard basis for Fn and L̃ = ϕγ ◦ L ◦ ψβ. Now
note that for all i between 1 and n, we have ψβ(ei) = vi using the definition of ψβ given
in Lemma 10.27. Further, ϕγ(w) = [w]γ for all w ∈ V2 by definition of the map ϕβ.
Hence we see that for all i between 1 and n, we have

L̃(ei) = (ϕγ ◦ L ◦ ψβ)(ei) = (ϕγ ◦ L)(vi) = ϕγ(L(vi)) = [L(vi)]γ.

In Example 10.29, we already computed the matrix representation of a linear map (the
matrix denoted by A in the example). Let us consider a few more examples.

Example 10.32

This example is a continuation of Example 10.18. There, for α ∈ R, we considered the linear
map Rα : R2 → R2 defined by Rα(v1, v2) = (cos(α) · v1 − sin(α) · v2, sin(α) · v1 + cos(α) · v2).

Choosing the standard ordered basis β = γ =

[
1
0

]
,
[

0
1

]
for R2 both in case of the domain

and the codomain of the linear map Rα, we obtain that

γ[Rα]β =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (10-4)
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The point of representing a linear map L with the matrix γ[L]β, is that the structure of
the original linear map is “encoded” in this matrix. The following theorem makes this
more precise.

Theorem 10.33

Let F be a field and V1, V2 and V3 three finite dimensional vector spaces over F.
Further, let β, γ and δ be ordered bases of respectively V1, V2 and V3. Then one has

1. [L(v)]γ = γ[L]β · [v]β for any linear map L : V1 → V2 and any v ∈ V1.

2. δ[M ◦ L]β = δ[M]γ · γ[L]β for any linear maps L : V1 → V2 and M : V2 → V3.

Proof. We first prove the first item. Let us write A = γ[L]β for convenience. We have
seen that ϕγ ◦ L ◦ ψβ = LA, using the notation from Lemma 10.27. Hence ϕγ ◦ L = LA ◦
(ψβ)

−1 = LA ◦ ϕβ. But then for any v ∈ V1, we obtain that (ϕγ ◦ L)(v) = (LA ◦ ϕβ)(v).
Simplifying the left-hand and right-hand side, we find that

(ϕγ ◦ L)(v) = ϕγ(L(v)) = [L(v)]γ

and
(LA ◦ ϕβ)(v) = LA(ϕβ(v)) = LA([v]β) = γ[L]β · [v]β.

Hence [L(v)]γ = γ[L]β · [v]β, which is what we needed to show.

The proof of the second item is somewhat similar. We write A = γ[L]β and B = δ[M]γ
for convenience. We have LA = ϕγ ◦ L ◦ ψβ and LB = ϕδ ◦M ◦ ψγ, which implies that
LB ◦ LA = ϕδ ◦M ◦ψγ ◦ ϕγ ◦ L ◦ψβ. Now using that ψγ and ϕγ are each other’s inverses,
see Lemma 10.27, we obtain that LB ◦ LA = ϕδ ◦ M ◦ L ◦ ψβ. Since on the one hand
LB ◦ LA = LB·A and on the other hand ϕδ ◦ M ◦ L ◦ ψβ = LC with C = δ[M ◦ L]β, this
implies that δ[M ◦ L]β = B ·A = δ[M]γ · γ[L]β. This is what we wanted to show.

The first item in this theorem simply tells us that the matrix γ[L]β contains all informa-
tion we need to know to describe the linear map L: computing L(v) and then computing
the coordinate vector of the outcome with respect to the ordered basis γ of V2, is exactly
the same as multiplying the matrix γ[L]β with the coordinate vector of v with respect to
the ordered basis β of V1. The second item says that composition of linear maps behaves
nice with respect to matrix representations. Let us look at an example of this.
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Example 10.34

We continue with Example 10.32. We have seen that if we choose β and γ to be the standard
basis of R2, then γ[Rα]β is as in equation (10-4). Recall that the map Rα : R2 → R2 itself,
geometrically can be described as a rotation over an angle α against the clock with midpoint
in the origin. In particular Rπ/2 corresponds with a rotation over π/2 radians (90 degrees).
This means that Rπ/2 ◦ Rπ/2 = Rπ, a rotation over π radians (180 degrees). In particular,
this means that Rπ(v1, v2) = (−v1,−v2). Let us check the second item in Theorem 10.33 for

V1 = V2 = V3 = R2, β = γ = δ = (

[
1
0

]
,
[

0
1

]
) and L = M = Rπ/2. Then on the one hand

we have

δ[Rπ/2]γ = γ[Rπ/2]β =

[
0 −1
1 0

]
and therefore

δ[Rπ/2]γ · γ[Rπ/2]β =

[
0 −1
1 0

]
·
[

0 −1
1 0

]
=

[
−1 0
0 −1

]
.

On the other hand, using equation (10-4) for α = π, we see that

δ[Rπ/2 ◦ Rπ/2]β = δ[Rπ]β =

[
−1 0
0 −1

]
.

We conclude that indeed δ[Rπ/2 ◦ Rπ/2]β = δ[Rπ/2]γ · γ[Rπ/2]β, just as it should be.

If one would do the same computation for M = Rα1 and L = Rα2 and use that Rα1 ◦ Rα2 =

Rα1+α2 , one obtains that[
cos(α1) − sin(α1)

sin(α1) cos(α1)

]
·
[

cos(α2) − sin(α2)

sin(α2) cos(α2)

]
=

[
cos(α1 + α2) − sin(α1 + α2)

sin(α1 + α2) cos(α1 + α2)

]
.

This identity actually implies the addition formulas for the cosine and the sine that we used
in the proof of Lemma 3.18:

cos(α1 + α2) = cos(α1) cos(α2)− sin(α1) sin(α2)

and
sin(α1 + α2) = sin(α1) cos(α2) + cos(α1) sin(α2).
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Example 10.35

Let F = R and V1 = R2, V2 = R2 and let

A =

[
1 1
2 0

]
.

Denote by LA : R2 → R2 the linear map defined by v 7→ A · v. We have for example

LA

([
−1
2

])
=

[
1 1
2 0

]
·
[
−1
2

]
=

[
1
−2

]
and

LA

([
1
1

])
=

[
1 1
2 0

]
·
[

1
1

]
=

[
2
2

]

Question:

1. Choosing the standard ordered bases β = γ = (

[
1
0

]
,
[

0
1

]
) for V1 and V2, compute

γ[LA]β.

2. Choosing the ordered bases β = γ = (

[
−1
2

]
,
[

1
1

]
) for V1 and V2, compute γ[LA]β.

Answer:

1. Since γ is chosen to be the standard basis and[
v1

v2

]
= v1 ·

[
1
0

]
+ v2 ·

[
0
1

]
,

we see that
[

v1

v2

]
γ

=

[
v1

v2

]
for all v1, v2 ∈ R. Using Lemma 10.31, we see that

γ[LA]β = [[LA(e1)]γ [LA(e2)]γ] = [LA(e1) LA(e2)] = [A · e1 A · e2] =

[
1 1
2 0

]
= A.

One can in fact see in a similar way that for any field F and any matrix A ∈ Fm×n, one
has γ[LA]β = A if β and γ are the standard ordered bases of Fm and Fn.
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2. Now we choose the ordered bases β = γ = (

[
−1
2

]
,
[

1
1

]
) for V1 and V2. Using

Lemma 10.31, we see that

γ[LA]β =

[
[LA

([
−1
2

])
]γ [LA(

[
1
1

]
)]γ

]
=

[
[A ·

[
−1
2

]
]γ [A ·

[
1
1

]
]γ

]
=

[[
1
−2

]
γ

[
2
2

]
γ

]
.

Now in order to compute [w]γ for w ∈ R2, one needs in general to solve a linear system
of equations. More precisely, let us write w = (w1, w2), then we want to find c1, c2 ∈ R2

such that [
w1

w2

]
= c1 ·

[
−1
2

]
+ c2 ·

[
1
1

]
.

Therefore we need to solve the system of linear equations in the indeterminates c1 and
c2 given by: [

−1 1
2 1

]
·
[

c1

c2

]
=

[
w1

w2

]
.

This can in principle be done using the theory of Chapter 6 or by multiplying the sys-
tem on both sides of the equality sign with the matrix[

−1 1
2 1

]−1

=
1
3

[
−1 1
2 1

]
.

However, in this case we are lucky, since we can see directly that[
1
−2

]
= (−1) ·

[
−1
2

]
and hence

[
1
−2

]
γ

=

[
−1
0

]
and [

2
2

]
= 2 ·

[
1
1

]
, implying

[
2
2

]
γ

=

[
0
2

]
.

We conclude that

γ[LA]β =

[
−1 0
0 2

]
.

The result is a surprisingly nice looking matrix: it is a diagonal matrix (see Definition
8.5).

As a last item in this section, we consider matrices of the form γ[L]β in case L is the
identity map from a vector space V to itself: idV : V → V, v 7→ v. Here β and γ are two,
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possibly distinct, ordered bases of V. From the first part of Theorem 10.33, we see that

γ[idV ]β · [v]β = [v]γ for all v ∈ V. (10-5)

In words equation (10-5) states that if one multiplies the matrix γ[idV ]β with the β-
coordinate vector of a vector v in V, the outcome is the γ-coordinate vector of v. For
this reason, the matrix γ[idV ]β is called a change of coordinates matrix also known as a
change of basis matrix .

Example 10.36

Let V = {p(Z) ∈ C[Z] | deg p(Z) ≤ 3}. Then β = (1, Z, Z2, Z3) and γ = (Z3, Z2, Z, 1) are
two ordered bases of V. Question: Compute the corresponding change of coordinates matrix
γ[idV ]β.

Answer: Using Lemma 10.31, what we need to do is to compute [1]γ, [Z]γ, [Z2]γ and [Z3]γ.
Since the only difference between β and γ is the order of the basis vectors this is not so hard
to do. For example

[1]γ =


0
0
0
1

 ,

since 1 is the fourth basis vector of γ. Proceeding similarly for the other basis vectors, one
obtains the desired change of coordinates matrix:

γ[idV ]β =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



We finish this section with a few facts on change of coordinates matrices that will come
in handy later.
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Lemma 10.37

Let F be a field, V a vector space over F of finite dimension n and β, γ and δ ordered
bases of V. Then

1. δ[idV ]γ · γ[idV ]β = δ[idV ]β,

2. β[idV ]β = In, where In denotes the n× n identity matrix, and

3. (γ[idV ]β)
−1 = β[idV ]γ.

Proof. The first item follows directly from the second item in Theorem 10.33. The second
item is clear, since if the ordered basis β is not changed, the coordinates of a vector with
respect to β do not change either. For the third item, note that according to the first
and second part of the theorem, we have γ[idV ]β · β[idV ]γ = γ[idV ]γ = In and similarly

β[idV ]γ · γ[idV ]β = β[idV ]γ = In. Hence (γ[idV ]β)
−1 = β[idV ]γ.

10.4 Usages of the matrix representation of a linear map

Now that we have the ability to represent linear maps between finite dimensional vector
spaces with a matrix, we will use this to describe in more detail how to compute the
kernel and image of a linear map. We start with a more general description of solutions
to equations involving a linear map.

Theorem 10.38

Let F be a field and L : V1 → V2 a linear map between vector spaces over F. Further,
let a vector w ∈ V2 be given and denote by S = {v ∈ V1 | L(v) = w}. Then exactly
one of the following two possibilities occurs:

1. S = ∅. This is the case if and only if w ̸∈ imageL.

2. S = {vp + v | v ∈ ker L}, where vp ∈ V1 is a vector such that L(vp) = w.

Proof. If S = ∅, then the equation L(v) = w has no solutions. This is equivalent to the
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statement that no vector v ∈ V1 is mapped to w. This in turn is the same as saying that
w is not in the image of L.

If S ̸= ∅, we may conclude that there exists a vector vp ∈ V1 such that L(vp) = w. If ṽ
is some vector, such that L(ṽ) = w, then using linearity of L, we see that L(ṽ− vp) =
w−w = 0. Hence ṽ− vp ∈ ker L. Since ṽ = vp + (ṽ− vp) and, as we already have seen
ṽ− vp ∈ ker L, this shows that S ⊆ {vp + v | v ∈ ker L}. Conversely, if a vector is of
the form vp + v for some v ∈ ker L, then L(vp + v) = L(vp) + L(v) = w + 0 = w. This
shows that {vp + v | v ∈ ker L} ⊆ S. Combining both inclusions, we may conclude that
S = {vp + v | v ∈ ker L}.

Hence the structure of the solution set of an equation of the form L(v) = w is completely
determined. The vector vp, if it exists, is called a particular solution. Notice how similar
this is to Theorem 6.10. This is not a coincidence. After all, the solution set to a system
of linear equations with augmented matrix [A|b] is exactly the same as the solution set
to the equation LA(v) = b. Moreover, ker LA is exactly the same as the solution set to
the homogeneous system of linear equations with coefficient matrix A. Hence, Theorem
6.10 is really just a special case of Theorem 10.38.

In case both V1 and V2 are finite dimensional vector spaces, we can computationally
solve an equation of the form L(v) = w by solving a suitable system of linear equations.
We make this more precise in the following theorem.

Theorem 10.39

Let F be a field and L : V1 → V2 a linear map between finite dimensional vector
spaces over F. Let β = (v1, . . . , vn) be an ordered basis of V1 and γ = (w1, . . . , wm)
be an ordered basis of V2. Then

{v ∈ V1 | L(v) = w} = {c1 ·v1 + · · · cn ·vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

In particular

ker L = {c1 · v1 + · · · cn · vn | (c1, . . . , cn) ∈ ker γ[L]β}.

Proof. Applying Lemma 10.27 to the vector space V1 and the given ordered basis β, we
see that the linear maps ϕβ : V1 → Fn defined by v 7→ [v]β and ψβ : Fn → V1 defined by
(c1, . . . , cn) 7→ c1 · v1 + · · ·+ cn · vn are inverses of each other.
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Assume that L(v) = w, then [L(v)]γ = [w]γ, which using the first item in Theorem
10.33 implies that γ[L]β[v]β = [w]γ. If we write (c1, . . . , cn) = [v]β, then v = c1 · v1 +
· · ·+ cn · vn. This shows that

{v ∈ V1 | L(v) = w} ⊆ {c1 · v1 + · · · cn · vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

Conversely, assume that c = (c1, . . . , cn) ∈ Fn satisfying γ[L]β · c = [w]γ is given. The
vector v = c1 · v1 + · · · cn · vn has the property that [v]β = c. Therefore γ[L]β · [v]β =
[w]γ. Using Theorem 10.33 again, we see that [L(v)]γ = [w]γ. But then L(v) = w. This
shows that

{v ∈ V1 | L(v) = w} ⊇ {c1 · v1 + · · · cn · vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

Combining the above two inclusions, we see that the first part of the theorem follows.

Choosing w = 0, the statement on ker L follows.

The point of this theorem is that in order to compute all solutions to the equation L(v) =
w, it is enough to compute all solutions to the equation γ[L]β · c = [w]γ. The latter
equation is a system of linear equation with augmented matrix [γ[L]β|[w]γ], which we
can solve using the techniques from Chapter 6. The fact that the kernel of a linear map
can be computed using the matrix representation of that map, has a nice consequence
known as the rank-nullity theorem for linear maps.

Corollary 10.40

Let F be a field and L : V1 → V2 a linear map between finite dimensional vector
spaces over F. Then

dim(ker L) + dim(imageL) = dim V1.

Proof. If {v1, . . . , vd} is basis of ker L, then {[v1]β, . . . , [vd]β} is a basis of ker γ[L]β using
Theorem 9.19. Hence dim ker L = dim ker γ[L]β. Moreover, dim imageL = dim imageγ[L]β
using Corollary 9.40. Then the result follows from the rank-nullity theorem for matrices
(see Theorem 10.10).
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Example 10.41

This example is a variation of Example 10.26. In that example, we consider the map ev :
C[Z] → C2 defined by p(Z) 7→ (p(0), p(1)) and computed its kernel. Let V1 ⊆ C[Z] be the
subspace of C[Z] consisting of all polynomials of degree at most three. Then β = (1, Z, Z2, Z3)

is an ordered basis of V1. For C2, we choose the standard ordered basis (e1, e2). Now let us
consider the linear map L : V1 → C2 defined by L(p(Z)) = (p(0), p(1)). In other words: we
restrict the domain of ev to V1, but otherwise do not change anything.

Questions: What is the kernel of the linear map L described above? What are all solutions to
the equation L(p(Z)) = (5, 8)?

Answer:

We can compute ker L in several ways, but let use Theorem 10.39. To compute ker L, we first
compute the kernel of γ[L]β. We have L(1) = (1, 1) = 1 · e1 + 1 · e2, L(Z) = (0, 1) = 1 · e2,
L(Z2) = (0, 1) = 1 · e2, and L(Z3) = (0, 1) = 1 · e2. Hence

γ[L]β =

[
1 0 0 0
1 1 1 1

]
.

Computing the reduced row echelon form of this matrix in this case just amounts to subtract-
ing the first row from the second row. One finds the matrix:[

1 0 0 0
0 1 1 1

]
.

Hence using Theorem 6.29 and Corollary 9.39, we find that a basis of kerγ[L]β is given by the
set 


0
−1
1
0

 ,


0
−1
0
1


 .

and hence a basis of ker L is given by the set {−Z + Z2,−Z + Z3.} Hence

ker L = {t1 · (−Z + Z2) + t2 · (−Z + Z3) | t1, t2 ∈ C}.

To solve the final question about the solutions to the equation L(p(Z)) = (5, 8), we use
Theorem 10.38. All we still need to do is to compute a particular solution. We could in
principle again transform the equation into a system of linear equations. Doing this would
give rise to a system of inhomogeneous linear equations with augmented matrix[

1 0 0 0 5
1 1 1 1 8

]
,
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which has reduced row echelon form[
1 0 0 0 5
0 1 1 1 3

]
.

A particular solution (c1, c2, c3, c4) should satisfy c1 = 5 and c2 + c3 + c4 = 3. Therefore
(5, 3, 0, 0) is a particular solution, which corresponds to the polynomial f (Z) = 5+ 3Z. Using
Theorem 10.38, we conclude that all solutions to the equation L(p(Z)) = (5, 8) form the set

{5 + 3Z + t1 · (−Z + Z2) + t2 · (−Z + Z3) | t1, t2 ∈ C}.

Just as an aside: another way to compute ker L is to use that we already have computed the
kernel of ev : C[Z]→ C2 in Example 10.26. Then

ker L = ker ev∩V1

= {Z · (Z− 1) · r(Z) | s(Z) ∈ C[Z]} ∩V1

= {Z · (Z− 1) · r(Z) | s(Z) ∈ C[Z], deg s(Z) ≤ 1}.

Here we used that Z · (Z − 1) · s(Z) ∈ V1 precisely if deg(Z · (Z − 1) · s(Z)) ≤ 3. Since
deg(Z · (Z − 1) · s(Z)) = 1 + 1 + deg s(Z), we see that Z · (Z − 1) · s(Z) ∈ V1 precisely if
deg s(Z) ≤ 1. It is left to the reader to check that this computation of ker L gives exactly the
same result as before.
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