
1

Thematic exercise 2.

The fundamental theorem of algebra states that any polynomial p(Z) ∈ C[Z] of degree at least
one has a root λ ∈ C (see Theorem 4.6.1 from the textbook). For practical applications it is
important to be able to find such a root or at least to find a good numerical approximation. The
goal of this thematic exercise is to obtain algorithmic insights on how numerical approximations
of roots of polynomials with real coefficients can be found. We explain two methods: the bisection
method and the Newton-Raphson method.

Part I: the bisection method

First, open a command line version of Python.

1. To work with roots of polynomials p(X) ∈ R[X], we define the function that such a po-
lynomial gives rise to: p : R → R, where x 7→ p(x). The first step is to figure out how to
define such a function in Python.

(a) As an example, consider the polynomial p(X) = X3 − X − 6. The corresponding
function p : R → R can be defined in Python as follows:
def p(x):
return x**3 - x - 6

Type this code in command line Python (remember to indent the second line). After
entering the first line, the prompt will change from > > > to ... After entering the
second line, the prompt will still look like ... , but after pressing the Return-key,
the prompt will change back to > > >. When it does, you have finished entering the
function in Python.

(b) Now you can compute values of the function p using Python. Type for example p(10)
and check by hand that Python returns the correct value.

(c) Use Python to compute p(−1), p(0), p(1), p(2) and p(3). Can you now indicate a root
of the polynomial p(X)?

In general, one will not be so lucky to find a root of a polynomial f(X) simply by computing
a few of its values. Therefore, we now study a criterion that sometimes can be used to at least
determine where a root is located approximately. We will start by formulating a theorem for
continuous functions. We will not define what a continuous function is precisely, but very loosely
speaking a function is continuous if its graph does not have any jumps in it. You may use freely
in this thematic exercise that any function f : R → R such that x 7→ f(x), where f(X) ∈ R[X] is
a polynomial, is continuous. Continuous function have nice properties, among other the following
theorem, which is known as the intermediate value theorem.

Theorem 1 Let a, b be real numbers satisfying a < b. Further, let f : [a, b] → R be a continuous
function.

• If f(a) < f(b) and y satisfies f(a) < y < f(b), then y = f(x) for some x in the interval
[a, b].

• If f(a) > f(b) and y satisfies f(b) < y < f(a), then y = f(x) for some x in the interval
[a, b].

2

We will not prove this theorem, but you may use it freely. If f : R → R is a function and
λ ∈ R satisfies f(λ) = 0, then we call λ a zero of f . If f is defined from a polynomial f(X), then
a zero of f is nothing but a root of the polynomial f(X). The intermediate value theorem has a
useful consequence concerning zeroes of continuous functions:

Corollary 2 Let a, b be real numbers satisfying a < b. Further, let f : [a, b] → R be a continuous
function satisfying f(a) ·f(b) < 0. Then there exists x ∈ [a, b] such that f(x) = 0. In other words:
the function f has a zero in the interval [a, b].

2. The aim of this question is to understand why Corollary 2 is a logical consequence of
Theorem 1.

(a) First of all, show that f(a) · f(b) < 0 implies that

f(a) < 0 ∧ f(b) > 0 or f(a) > 0 ∧ f(b) < 0.

(b) Conclude that if f(a) · f(b) < 0, then 0 is a value between f(a) and f(b). In other
words: conclude that either f(a) < 0 < f(b) or f(b) < 0 < f(a).

(c) Now apply Theorem 1 to conclude that f has a zero in the interval [a, b].

3. The polynomial p(X) = X3 − X − 6 was on purpose chosen in such a way that it had the
“nice” root 2. We now choose a different polynomial without such nice roots.

(a) Consider the polynomial f(X) = X3 − X − 5 and define in Python the corresponding
function f : R → R, that is the function such that x 7→ x3 − x − 5.

(b) Use Python to compute f(x) for x ∈ {0, 1, 2, 3}. Conclude using Corollary 2 and the
fact that f(1) < 0 and f(2) > 0, that the polynomial f(X) = X3 − X − 5 has a root
in the interval [1, 2]. As mentioned previously, you may use freely that a polynomial
function is continuous.

(c) Given an interval [a, b], one calls the value (a + b)/2 the midpoint of that interval and
the value b − a the width of the interval. For example, the interval [1, 2] has midpoint
(1+2)/2 = 1.5 and width 2−1 = 1. Now compute f(x) in the midpoint of the interval
[1, 2]. Does the polynomial X3 − X − 5 have a root in the interval [1, 1.5] or in the
interval [1.5, 2]? Note that these intervals have width 1/2, that is to say, half the width
of the interval [1, 2].

(d) Considering the value f(x) for the midpoint of the interval you just found, determine
an interval of width 1/4 containing a root of the polynomial X3 − X − 5.

(e) One can in principle continue the procedure from 3 (d), each time finding an interval
containing a root of X3 − X − 5 with half the width of the previous one. Perform
two more steps and determine an interval of width 1/16 containing a root of the
polynomial X3 − X − 5.

The ideas given in the previous give rise to an algorithm to find approximations of the roots of
a polynomial with real coefficients. More precisely: given p(X) ∈ R[x] and a, b ∈ R such that a < b
and p(a) · p(b) < 0, we can recursively define a sequence of intervals [a0, b0] , [a1, b1] , [a2, b2] , . . .
as follows:

3

[an, bn] =



[a, b] if n = 0[
an−1,

an−1 + bn−1

2

]
if n ≥ 1 and p(an−1) · p

(
an−1 + bn−1

2

)
≤ 0

[
an−1 + bn−1

2 , bn−1

]
if n ≥ 1 and p(an−1) · p

(
an−1 + bn−1

2

)
> 0

Taking the midpoints of all the found intervals then gives rise to better and better approximations
of a root of the polynomial p(X). In other words: the sequence of real numbers r0, r1, r2, . . .
defined as

rn = an + bn

2
give approximations of a root of p(X). The larger the value of n is, the better the approximation
will become. This way of approximating roots is called the bisection method.

4. (a) For the polynomial f(X) = X3 − X − 5 and [a, b] = [1, 2], use Python to compute
r4. You can reuse the intervals you already compute in the previous exercise. Also use
Python to compute f(r4). Answer: r4 = 1.90625 and f(r4) = 0.020660400390625.

(b) Still assuming that f(X) = X3 − X − 5 and [a, b] = [1, 2], show using induction on n
that the width of the interval [an, bn] is equal to 1/2n for all n ∈ Z≥0. A consequence
of this is that the distance from rn to a root of f(X) is at most 1/2n+1.

Remark 3 As a small warning, note that in a real life application, one may actually only know
the coefficients of p(X) up to a certain numerical precision. Then if (an−1 + bn−1)/2 is already
close to a root of p(X), it may not be possible to reliably determine whether p(an−1) · p((an−1 +
bn−1)/2) > 0 or p(an−1) · p((an−1 + bn−1)/2) ≤ 0, but only that p(an−1) · p((an−1 + bn−1)/2)
is very close to zero. These type of considerations are the topic of numerical analysis and are
important when developing so-called numerical algorithms.

4

Part II: Newton-Raphson’s method for finding roots of polynomials with real coef-
ficients

If all went well, you found in the previous part that the polynomial X3 − X − 5 has a root
contained in the interval [1.875, 1.9375]. The midpoint of this interval is therefore a reasonable
approximation of a root of X3 − X − 5. As already computed in the previous exercise, this
midpoint is equal to (1.875 + 1.9375)/2 = 1.90625. We will now consider another way to find
numerical approximations of roots of a polynomial p(X) ∈ R[X].

5. Let p(X) ∈ R[X] be a polynomial of degree at least one. Further, suppose that λ ∈ R is a
root of p(X). As before, we define a function that this polynomial gives rise to p : R → R,
where x 7→ p(x).

(a) Suppose that λ is a root of p(X) of multiplicity m, where m is at least two. Use
Definition 4.6.1 to conclude that in that case there exists a polynomial g(X) such
that f(X) = (X − λ)m · g(X). Now use the assumption that m is at least two, to
deduce that there exist a polynomial h(X) such that f(X) = (X − λ)2 · h(X).

(b) Given a polynomial

f(X) = a0 + a1X + a2X2 + · · · + anXn,

the derivative of f(X), denoted by f ′(X) or sometimes also by f(X)′, is defined in
the usual way as

f ′(X) = a1 + 2a2X + · · · + nanXn−1.

Show that if λ is a root of f(X) of multiplicity at least two, then λ is a root of f ′(X).
Hint: use that f(X) = (X −λ)2 ·h(X) for some polynomial h(X) and use the product
rule for differentiation.

(c) Suppose that λ is a root of f(X) of multiplicity one. Show that in this case there
exists a polynomial g(X) such that f(X) = (X − λ) · g(X) and g(λ) ̸= 0.

(d) Show that if λ is a root of f(X) of multiplicity one, then f ′(λ) ̸= 0. Hint: use again
the product rule to find an expression for f ′(x), this time on the product f(X) =
(X − λ) · g(X). Then use the fact that g(λ) ̸= 0.

A root of a polynomial f(X) of multiplicity one is also called a simple root. In a more general
setting, if f : R → R is a differentiable function, then an element λ ∈ R is called a simple zero of
f if f(λ) = 0 and f ′(λ) ̸= 0.

6. Let f : R → R be a differentiable function and let x0 ∈ R be given. You may assume that
f ′(x0) ̸= 0.

(a) Check that the tangent line to the graph of f at the point (x0, f(x0)) is given by the
equation y = f ′(x0) · (x − x0) + f(x0).

(b) Show that the intersection of this tangent line and the x-axis is given by the point
(x1, 0), where

x1 = x0 − f(x0)
f ′(x0) .

5

If the initial “guess” x0 is close to λ, then x1 tends to be closer to λ than x0. See the following
figure for an illustration.

x

y
graph: y = f(x)

(x0, f(x0))

λ x0x1

The idea of the Newton-Raphson method (often called the Newton-Raphson algorithm) is now

to iterate this procedure: once x1 = x0 − f(x0)
f ′(x0) is computed, one can define x2 = x1 − f(x1)

f ′(x1) . If
the starting point x1 was already closer to λ than x0, one would expect x2 to be even closer! If we
want to try to find an even better approximation of λ, one can simply iterate the procedure even
more times. More formally, what we find is a sequence of real numbers x0, x1, x2, . . . recursively
defined as follows:

xn =


x0 if n = 0

xn−1 − f(xn−1)
f ′(xn−1) if n ≥ 1

It turns out that the following is true:

Theorem 4 Let f : R → R be a differentiable function and suppose that λ is a simple zero of
f . Then there exists a real number ϵ > 0 such that for any x0 ∈]λ − ϵ, λ + ϵ[the real numbers xn

defined above tend to λ as n increases.

Formally, one says that the sequence x0, x1, x2, . . . converges to λ, or in other words that
limn→∞ xn = λ. Convergence of sequences is a topic for other courses though and we will only
use this terminology in an informal way. Let us try out the Newton-Raphson algorithm in a
specific example.

7. Let f : R → R be defined by f(x) = x3 − x − 5 and let x0 = 2.

(a) Compute x1 and x2 using Python directly from the formulas x1 = x0 − f(x0)
f ′(x0) and

x2 = x1 − f(x1)
f ′(x1) .

(b) To compute further values of xn, it is more convenient to use a recursively defined
function F : Z≥0 → R where F (n) = xn. To define it, we first need to define in Python
the functions f : R → R, with x 7→ x3 − x − 5 and a function fprime : R → R with
x 7→ 3x2 − 1. Note that fprime(x) = f ′(x). Defining this functions in Python can be
done in the following way:

6

def f(x):
return x**3 - x - 5

def fprime(x):
return 3*x**2 - 1

Now we set x0 equal to 2 and define the function F : Z≥0 → R where F (n) = xn in a
recursive way as follows in Python:

x0=2
def F(n):
if n==0:

return x0
else:

return (F(n-1)-f(F(n-1))/fprime(F(n-1)))

Now type the code given above in Python to set x0 to 2 and to define the functions
f , fprime and F . Verify in Python that F (0), F (1) and F (2) give the right output
F (0) = 2, F (1) = x1 and F (2) = x2. You can compare with the values of x1 and x2
that you already computed in the previous part of this exercise.

(c) Use the recursively defined function F to compute x3 and x4.
(d) Compute x5 and compare it to x4. What is the truth value of the logical expression

F(4)==F(5) according to Python? Any comments about Pythons output?
(e) Recall that using the bisection method, one obtained after four iterations the ap-

proximation r4 = 1.90625 for a root of f(X) = X3 − X − 5, which satisfied f(r4) =
0.020660400390625. Now compute f(x4). Which approach gives the better approxi-
mation of a root of X3 − X − 5 after four iterations: the bisection method of the
Newton-Raphson algorithm?

Remark 5 One can show that (roughly speaking) with each iteration of the bisection method, the
number of correct decimals increases by the same amount. By contrast, if your choice of starting
value x0 is reasonably close to an actual root (and that root has multiplicity one), then using the
Newton-Raphson method, the number of correct decimals doubles in each iteration! In practice,
one combines both methods: first the bisection method with only a few iterations is used to find a
reasonable approximation of a root, then the Newton-Raphson method is used to find a very good
approximation of this root very fast.

End of thematic exercise 2.
For those wanting more, here are a few more questions, but making them is purely
voluntary!

We will be using complex numbers now, so we start by loading the same package as in
thematic exercise 1.

import cmath

Just as a reminder, the complex number 2 + 3i can be defined as follows.

7

z = complex(2,3)

Displaying the complex number can now be done easily by typing:

z

Note that z is displayed by Python as 2 + 3j. Hence command line Python prefers to use ‘j’
rather than ‘i’.

8. We have seen an example where Newton-Raphson’s algorithm worked very well. Its we-
akness is that the initial guess x0 needs to be a good one. We consider an example that
demonstrates this. We choose in this exercise g : C → C defined by g(x) = x3 − 2x2.

(a) Choose x0 = −1 and use Python to compute xn for some small values of n. Conclude
that as before the sequence x0, x1, x2, . . . seems to tend to a root of the polynomial
X3 − 2X2.

(b) Now choose x0 = 0 and use Python to (try to) compute x1. What goes wrong?
(c) Let us choose x0 = 0.1 to avoid the division by zero in the first step. Compute xn for

n up to 10. Does the sequence x0, x1, x2, . . . seem to converge?

9. As a final example, we show that Newton-Raphson’s algorithm can also find approximations
of complex (simple) roots of polynomials. We choose in this exercise h : C → C defined by
h(z) = z3 − 1.

(a) The roots of the polynomial Z3 − 1 are the complex numbers 1, − 1
2 + 1

2
√

3 · i and
− 1

2 − 1
2
√

3 · i. Verify this using the theory of binomial equations.
(b) Now choose x0 = i and use Python to compute xn for some small values of n. To

which root of Z3 − 1 does the sequence x0, x1, x2, . . . converge?
(c) Experiment with the value of x0 and find a value of it such that the resulting sequence

x0, x1, x2, . . . converges to the root − 1
2 − 1

2
√

3 · i.

