Homework assignment 4

Solve the following problems without electronic aid.
a) Let V be the real vector space $\mathbb{R}^{3 \times 3}$. Provide a subspace of V with a dimension of 6 and justify why your answer is correct.
b) Let W be spanned by the following vectors in \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{c}
7 \\
11 \\
6
\end{array}\right]
$$

Provide a basis for W.
c) Let C_{∞} be the real vector space from Example 9.34 in the Lecture Notes. Given the function $L: C_{\infty} \rightarrow C_{\infty}$ defined by $L(f)=f^{\prime}+f+1$, determine whether L is a linear map between real vector spaces. As usual the expression f^{\prime} denotes the derivative function of f.
d) Let $L: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be defined as follows:

$$
L\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & -4 & 5
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], \quad v_{1}, v_{2}, v_{3} \in \mathbb{C}
$$

The following two ordered bases are given:

$$
\beta=\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right) \quad \text { for } \mathbb{C}^{2} \text { and } \gamma=\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \quad \text { for } \mathbb{C}^{3}
$$

Compute the mapping matrix ${ }_{\beta}[L]_{\gamma}$.
e) Let V denote the real vector space $\mathbb{R}^{2 \times 2}$ consisting of 2×2 matrices with real coefficients.

The following ordered basis for V is chosen:

$$
\beta=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) .
$$

The linear map $M: V \rightarrow V$ is given by

$$
M(\mathbf{A})=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot \mathbf{A}, \quad \mathbf{A} \in V
$$

Compute the mapping matrix ${ }_{\beta}[M]_{\beta}$.
f) The following matrix is given:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 0 & -1 \\
2 & -1 & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

Determine the eigenvalues of the matrix and the bases of the corresponding eigenspaces. Can the matrix be diagonalized? If no, explain why not. If yes, provide a matrix \mathbf{Q} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{-1}=\boldsymbol{\Lambda}$.

The assignment is to be delivered as a .pdf file by upload on the course's DTU Learn module (under "Assignments"). Deadline is Sunday November 26 at 23:55.

