Homework Assignment 2

Solve the following problems without electronic aid.
a) We are given the complex numbers z_{1} and z_{2}. We are informed that $\operatorname{Arg}\left(z_{1}\right)=\pi / 3$ and $\operatorname{Arg}\left(z_{2}\right)=\pi / 6$. Show that $z_{1} z_{2}$ is a purely imaginary number.
b) Determine two different solutions to the equation $\mathrm{e}^{z}=1+i$.
c) 1. Show using the division algorithm that the polynomial $Z^{2}+3 Z+2$ is a divisor of the polynomial $Z^{4}+3 Z^{3}+4 Z^{2}+6 Z+4$ with no remainder.
2. Now determine all roots of the polynomial $Z^{4}+3 Z^{3}+4 Z^{2}+6 Z+4$.
d) 1 . Show that the number 2 is a root in the polynomial $Z^{3}-3 Z^{2}+4$.
2. Compute the multiplicity of the root 2 in the polynomial $Z^{3}-3 Z^{2}+4$.
e) A function $f: \mathbb{N} \rightarrow \mathbb{N}$ fulfills that $f(1)=1$ as well as the following:

$$
f(n)= \begin{cases}2 \cdot f(n / 2) & \text { if } n \text { is even } \\ f(n-1) & \text { if } n \text { is odd and } n>1\end{cases}
$$

Compute $f(1000)$.
f) Given a real number $h \in \mathbb{R}_{>0}$, show using induction on n that

$$
(1+h)^{n} \geq 1+n h
$$

for all $n \in \mathbb{Z}_{\geq 0}$.

Your solution must be uploaded as a pdf file to the course's DTU Learn module under "Assignments". The deadline is Sunday October 15 at 23:55.

