Homework Assignment 3

Solve the following problems without electronic aid.

a) Compute the rank of the following matrix:

b) We are given a certain inhomogeneous system of equations over \mathbb{R} with four equations and three unknowns. We are being informed that the vector

$$\mathbf{v}_p = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \in \mathbb{R}^3$$

is a particular solution to the system. Is the vector $2 \cdot \mathbf{v}_p$ a solution to the system?

c) Determine whether the following four vectors in \mathbb{R}^3 are linearly independent:

$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\2\\2 \end{bmatrix}.$$

- d) A matrix **B** is called symmetric if $\mathbf{B}^T = \mathbf{B}$.
 - 1. Now let **A** be an arbitrary $n \times m$ matrix. Show that the matrix $\mathbf{A} \cdot \mathbf{A}^T$ is symmetric.
 - 2. Assume that **B** is symmetric and invertible. Is \mathbf{B}^{-1} also symmetric? Justify your answer.
- e) Compute the determinant of the following matrix:

[1	1	1	1]
1	1	2	3	
1	1	4	5	·
1	1	6	7	

f) Let *n* be a natural number and **A** as well as **B** two $n \times n$ matrices. Assume that both **A** and **B** are invertible matrices. Show that in that case $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$.

The solved problems are to be delivered as a pdf file to the course's **DTU Learn module** under "Assignments". The deadline is **Sunday November 5th**, **23:55**.