Homework Assignment 3

Solve the following problems without electronic aid.
a) Compute the rank of the following matrix:

$$
\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
2 & 1 & 2 & 1 \\
0 & 2 & 2 & 1
\end{array}\right]
$$

b) We are given a certain inhomogeneous system of equations over \mathbb{R} with four equations and three unknowns. We are being informed that the vector

$$
\mathbf{v}_{p}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \in \mathbb{R}^{3}
$$

is a particular solution to the system. Is the vector $2 \cdot \mathbf{v}_{p}$ a solution to the system?
c) Determine whether the following four vectors in \mathbb{R}^{3} are linearly independent:

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] .
$$

d) A matrix \mathbf{B} is called symmetric if $\mathbf{B}^{T}=\mathbf{B}$.

1. Now let \mathbf{A} be an arbitrary $n \times m$ matrix. Show that the matrix $\mathbf{A} \cdot \mathbf{A}^{T}$ is symmetric.
2. Assume that \mathbf{B} is symmetric and invertible. Is \mathbf{B}^{-1} also symmetric? Justify your answer.
e) Compute the determinant of the following matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 3 \\
1 & 1 & 4 & 5 \\
1 & 1 & 6 & 7
\end{array}\right]
$$

f) Let n be a natural number and \mathbf{A} as well as \mathbf{B} two $n \times n$ matrices. Assume that both \mathbf{A} and \mathbf{B} are invertible matrices. Show that in that case $(\mathbf{A} \cdot \mathbf{B})^{-1}=\mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$.

The solved problems are to be delivered as a pdf file to the course's DTU Learn module under "Assignments". The deadline is Sunday November 5th, 23:55.

